Skip to main content
Log in

Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although there is a large body of knowledge on protein synthesis, the available data on protein catabolism, although quite substantial, are still inadequate. This is due to the marked differences in the activity of proteolytic enzymes, compounded by different substrate specificities and multiple environmental factors. Understanding enzyme behavior under physiological and pathological conditions requires the identification of specific proteolytic activities, such as aminopeptidases, as able to degrade certain peptidergic hormones or neuropeptides. Another requirement is the isolation, purification and characterization of the enzymes involved. In addition, systematic studies are needed to determine each enzyme’s subcellular location, tissue distribution, and the influence of environmental factors such as diurnal rhythm, age, gender, diet, cholesterol, or steroids. Central and peripheral aminopeptidases may play a role in the control of blood pressure by coordinating the effect of the different peptides of the renin–angiotensin system cascade, acting through the AT1, AT2, and AT4 receptors. Our review of the available data suggests the hypothesis that cholesterol or steroids, particularly testosterone, significantly influence aminopeptidase activities, their substrate availability and consequently their functions. These observations may have relevant clinical implications for a better understanding of the pathophysiology of cardiovascular diseases, and thus for their treatment with aminopeptidase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

Ang:

Angiotensin

ArgAP:

Arginyl aminopeptidase

AspAP:

Aspartyl aminopeptidase

AVP:

Arginine vasopressin

CysAP:

Cystinyl aminopeptidase

GFR:

Glomerular filtration rate

GluAP:

Glutamyl aminopeptidase

HDL:

High-density lipoproteins

LDL:

Low-density lipoproteins

LeuAP:

Leucyl aminopeptidase

MUFA:

Monounsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

RAS:

Renin–angiotensin system

SAFA:

Saturated fatty acids

SHR:

Spontaneously hypertensive rats

TNF:

Tumor necrosis factor

References

  1. Banegas I, Prieto I, Vives F et al (2006) Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst 7:129–134

    PubMed  CAS  Google Scholar 

  2. Barret AJ, Rawlings ND, Woessner JF (eds) (1998) Handbook of proteolytic enzymes. Academic Press, London

    Google Scholar 

  3. Wright JW, Harding JW (1997) Important role for angiotensin III and IV in the brain renin–angiotensin system. Brain Res Brain Res Rev 25:96–124

    PubMed  CAS  Google Scholar 

  4. Reaux A, Fournie-Zaluski MC, David C et al (1999) Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci USA 96:13415–13420

    PubMed  CAS  Google Scholar 

  5. Min L, Sim MK, Xu XG (2000) Effects of des-aspartate-angiotensin I on angiotensin II-induced incorporation of phenylalanine and thymidine in cultured rat cardiomyocytes and aortic smooth muscle cells. Regul Pept 95:93–97

    PubMed  CAS  Google Scholar 

  6. Blair-West JR, Coghlan JP, Denton DA et al (1980) A dose-response comparison of the actions of angiotensin II and angiotensin III in sheep. J Endocrinol 87:409–417

    PubMed  CAS  Google Scholar 

  7. Li Q, Feenstra M, Pfaffendorf M, Eijsman L, van Zwieten PA (1997) Comparative vasoconstrictor effects of angiotensin II, III, and IV in human isolate saphenous vein. J Cardiovasc Pharmacol 29:451–456

    PubMed  CAS  Google Scholar 

  8. De Gasparo M, Whitebread S, Bottari SP, Levens NR (1994) Heterogeneity of angiotensin receptor subtypes. In: Timmermans PBMWM, Wexler RR (eds) Medicinal Chemistry of the Renin Angiotensin System. Elsevier Science BV, pp 269–294

  9. Garcia-Sainz JA, Martinez-Alfaro M, Romero-Avila MT, Gonzalez-Espinosa C (1997) Characterization of the AT1 angiotensin II receptor expressed in guinea pig liver. J Endocrinol 154:133–138

    PubMed  CAS  Google Scholar 

  10. Ruiz-Ortega M, Lorenzo O, Egido J (1998) Angiotensin III up-regulates genes involved in kidney damage in mesangial cells and renal interstitial fibroblast. Kidney Int Suppl 68:S41–S45

    PubMed  CAS  Google Scholar 

  11. Wright JW, Mizutani S, Murray CE, Amir HZ, Harding JW (1990) Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens 8:969–974

    PubMed  CAS  Google Scholar 

  12. Fournie-Zaluski MC, Fassot C, Valentin B et al (2004) Brain renin–angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA 101:7775–7780

    PubMed  CAS  Google Scholar 

  13. Kokje RJ, Wilson WL, Brown TE et al (2007) Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 49:1328–1335

    PubMed  CAS  Google Scholar 

  14. Chai SY, Fernando R, Peck G et al (2004) The angiotensin IV/AT4 receptor. Cell Mol Life Sci 61:2728–2737

    PubMed  CAS  Google Scholar 

  15. Coleman JKM, Krebs LT, Hamilton TA et al (1998) Autoradiographic identification of kidney angiotensin IV binding sites and angiotensin-IV-induced renal cortical blood flow changes in rats. Peptides 19:269–277

    PubMed  CAS  Google Scholar 

  16. Wright JW, Harding JW (2004) The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning and memory. Prog Neurobiol 72:263–293

    PubMed  CAS  Google Scholar 

  17. Ruiz-Ortega M, Esteban V, Egido J (2007) The regulation of the inflammatory response through nuclear factor-kappab pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 17:19–25

    PubMed  CAS  Google Scholar 

  18. Lim BC, Sim MK (1998) Actions of des-Asp angiotensin I on the aortic rings of the normo- and hypertensive rats. Clin Exp Hypertens 20:105–117

    PubMed  CAS  Google Scholar 

  19. Sim MK, Yuan HT (1995) Effects of des-Asp-angiotensin I on the contractile action of angiotensin II and angiotensin III. Eur J Pharmacol 278:175–178

    PubMed  CAS  Google Scholar 

  20. Sim MK, Min L (1998) Effects of des-Asp-angiotensin I on experimentally-induced cardiac hypertrophy in rats. Int J Cardiol 63:223–227

    PubMed  CAS  Google Scholar 

  21. Wen Q, Sim MK, Tang FR (2004) Reduction of infarct size by orally administered des-aspartate-angiotensin I in the ischemic reperfused rat heart. Regul Pept 120:149–153

    PubMed  CAS  Google Scholar 

  22. Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59:269–295

    PubMed  CAS  Google Scholar 

  23. Ramirez M, Arechaga G, Garcia S et al (1990) Mn2(+)-activated aspartate aminopeptidase activity, subcellular localization in young and adult rat brain. Brain Res 522:165–167

    PubMed  CAS  Google Scholar 

  24. Arechaga G, Sanchez B, Alba F et al (1995) Subcellular distribution of soluble and membrane-bound Arg-beta-naphthylamide hydrolyzing activities in the developing and aged rat brain. Cell Mol Biol Res 41:369–375

    PubMed  CAS  Google Scholar 

  25. Arechaga G, Sanchez B, Alba F et al (1996) Developmental changes of soluble and membrane-bound aspartate aminopeptidase activities in rat brain. J Physiol Biochem 52:149–154

    CAS  Google Scholar 

  26. Arechaga G, Martinez JM, Prieto I, Ramirez MJ, Alba F, Ramirez M (1999) Changes in membrane-bound leucine aminopeptidase activity during maturation and ageing of brain. Biochem Mol Biol Int 47:851–856

    PubMed  CAS  Google Scholar 

  27. Giaquinto S (1988) Aging and the nervous system. John Wiley & Sons, New York, pp 34–52

    Google Scholar 

  28. Marks N, Lajtha A (1970) Developmental changes in peptide-bond hydrolases. In: Lajtha A (ed) Protein metabolism of the nervous system. Plenum, New York, pp 39–74

    Google Scholar 

  29. Alba F, Ramirez M, Cantalejo ES, Iribar C (1988) Aminopeptidase activity is asymmetrically distributed in selected zones of rat brain. Life Sci 43:935–939

    PubMed  CAS  Google Scholar 

  30. Ramírez M, Sánchez B, Arechaga G, García S, Venzon D, De Gandarias JM (1992) Diurnal rhythm in brain Lysyl/Arginyl aminopeptidase activity, a bilateral study. Neurosci Res Commun 10:141–147

    Google Scholar 

  31. Alba F, Arenas JC, Iribar C, Ramirez M (1993) Regional distribution of soluble and membrane-bound aminopeptidase activities in rat brain. Brain Res Bull 31:393–396

    PubMed  CAS  Google Scholar 

  32. Alba F, Ramirez M, Iribar C, Cantalejo ES, Osorio C (1986) Asymmetrical distribution of aminopeptidase activity in the cortex of rat brain. Brain Res 368:158–160

    PubMed  CAS  Google Scholar 

  33. Ramírez M, Arechaga G, Sánchez B, García S, Venzon D, De Gandarias JM (1991) Diurnal variation of leucyl-aminopeptidase activity in the rat hypothalamus. Horm Metab Res 23:452–453

    PubMed  Google Scholar 

  34. Banegas I, Prieto I, Alba F (2005) Angiotensinase activity is asymmetrically distributed in the amygdala, hippocampus and prefrontal cortex of the rat. Behav Brain Res 156:321–326

    PubMed  CAS  Google Scholar 

  35. Ramirez M, Sanchez B, Arechaga G (1992) Daily rhythm of aspartate aminopeptidase activity in the retina, pineal gland and occipital cortex of the rat. Neuroendocrinology 56:926–929

    PubMed  CAS  Google Scholar 

  36. Heywood LH (1980) Testosterone levels in the male laboratory rat: variation under experimental conditions. Int J Androl 3:519–529

    PubMed  CAS  Google Scholar 

  37. Ramirez M, Prieto I, Vives F, de Gasparo M, Alba F (2004) Neuropeptides, neuropeptidases and brain asymmetry. Curr Protein Pept Sci 5:497–506

    PubMed  CAS  Google Scholar 

  38. Song L, Wilk E, Wilk S, Healy DP (1993) Localization of immunoreactive glutamyl aminopeptidase in rat brain. I. Association with cerebral microvessels. Brain Res 606:286–294

    PubMed  CAS  Google Scholar 

  39. Zini S, Masdehors P, Lenkei Z et al (1997) Aminopeptidase A: distribution in rat brain nuclei and increased activity in spontaneously hypertensive rats. Neuroscience 78:1187–1193

    PubMed  CAS  Google Scholar 

  40. Ramirez M, Arechaga G, Sanchez B et al (1993) Developmental and ageing changes in aminopeptidase activities in selected tissues of the rat. Experientia 49:300–303

    PubMed  CAS  Google Scholar 

  41. Vermeulen A, Rubens R, Verdonck L (1972) Testosterone secretion and metabolism in male senescence. J Clin Endocrinol Metab 34:730–735

    PubMed  CAS  Google Scholar 

  42. De Gandarias JM, Ramirez M, Zulaica J, Casis L (1989) Aminopeptidase (arylamidase) activity in discrete areas of the rat brain: sex differences. Horm Metab Res 21:285–286

    PubMed  Google Scholar 

  43. Mentzel S, Dijkman H, Van Son J, Koene R, Assmann K (1996) Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem 44:445–461

    PubMed  CAS  Google Scholar 

  44. Ramirez-Exposito MJ, Martinez JM, Prieto I, Alba F, Ramirez M (2000) Comparative distribution of glutamyl and aspartyl aminopeptidase activities in mouse organs. Horm Metab Res 32:161–163

    PubMed  CAS  Google Scholar 

  45. Wilk S, Wilk E, Magnusson RP (1998) Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem 273:15961–15970

    PubMed  CAS  Google Scholar 

  46. Millan MA, Aguilera G (1988) Angiotensin II receptors in testes. Endocrinology 122:1984–1990

    PubMed  CAS  Google Scholar 

  47. Bouby N, Hus-Citharel A, Marchetti J, Bankir L, Corvol P, Llorens-Cortes C (1997) Expression of type 1 angiotensin II receptor subtypes and Ang II-induced calcium mobilization along the rat nephron. J Am Soc Nephrol 8:1658–1667

    PubMed  CAS  Google Scholar 

  48. Song L, Healy DP (1999) Kidney aminopeptidase A and hypertension, Part II. Effects of angiotensin II. Hypertension 33:746–752

    PubMed  CAS  Google Scholar 

  49. Martinez JM, Prieto I, Ramirez MJ (1998) Sex differences and age-related changes in human serum aminopeptidase A activity. Clin Chim Acta 274:53–61

    PubMed  CAS  Google Scholar 

  50. Williams PT, Fortmann SP, Terry RB et al (1987) Associations of dietary fat, regional adiposity, and blood pressure in men. JAMA 257:3251–3256

    PubMed  CAS  Google Scholar 

  51. Terpstra AH, van den Berg P, Jansen H, Beynen AC, van Tol A (2000) Decreasing dietary fat saturation lowers HDL–cholesterol and increases hepatic HDL binding in hamsters. Br J Nutr 83:151–159

    PubMed  CAS  Google Scholar 

  52. Lahoz C, Alonso R, Ordovás JM, López-Farré A, de Oya M, Mata P (1997) Effects of dietary fat saturation on eicosanoid production, platelet aggregation and blood pressure. Eur J Clin Invest 27:780–787

    PubMed  CAS  Google Scholar 

  53. Martínez JM, Prieto I, Ramírez MJ, Alba F, Ramírez M (1997) Cholesterol and steroids action on aminopeptidases. Bioch Soc Trans 25:113S

    Google Scholar 

  54. Arechaga G, Martinez JM, Prieto I et al (2001) Serum aminopeptidase A activity of mice is related to dietary fat saturation. J Nutr 131:1177–1179

    PubMed  CAS  Google Scholar 

  55. Wilk S, Healy DP (1993) Glutamyl aminopeptidase (aminopeptidase A), the BP-1/6C3 antigen. Adv Neuroimmunol 3:195–207

    CAS  Google Scholar 

  56. Williams GH (1988) Converting-enzyme inhibitors in the treatment of hypertension. N Engl J Med 319:1517–1525

    Article  PubMed  CAS  Google Scholar 

  57. Yaqoob P, Sherrington EJ, Jeffery NM et al (1995) Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol 27:297–310

    PubMed  CAS  Google Scholar 

  58. Arechaga G, Prieto I, Segarra AB et al (2002) Dietary fatty acid composition affects aminopeptidase activities in the testes of mice. Int J Androl 25:113–118

    PubMed  CAS  Google Scholar 

  59. Sharpe RM (1986) Paracrine control of the testis. Clin Endocrinol Metab 15:185–207

    PubMed  CAS  Google Scholar 

  60. Surai PF, Noble RC, Sparks NH, Speake BK (2000) Effect of long-term supplementation with arachidonic or docosahexaenoic acids on sperm production in the broiler chicken. J Reprod Fertil 120:257–264

    PubMed  CAS  Google Scholar 

  61. Sebokova E, Garg ML, Wierzbicki A, Thomson AB, Clandinin MT (1990) Alteration of the lipid composition of rat testicular plasma membranes by dietary (n − 3) fatty acids changes the responsiveness of Leydig cells and testosterone synthesis. J Nutr 120:610–618

    PubMed  CAS  Google Scholar 

  62. Alba F, Arenas JC Lopez MA (1995) Comparison of soluble and membrane-bound pyroglutamyl peptidase I activities in rat brain tissues in the presence of detergents. Neuropeptides 29:103–107

    PubMed  CAS  Google Scholar 

  63. Muriana FJG, Ruiz-Gutierrez V, Vazquez CM (1992) Influence of dietary cholesterol on polyunsaturated fatty acid composition, fluidity and membrane-bound enzymes in liver microsomes of rats fed olive and fish oil. Biochimie 74:551–556

    PubMed  CAS  Google Scholar 

  64. Martinez JM, Ramirez MJ, Prieto I, Alba F, Ramirez M (1998) Sex differences and in vitro effects of steroids on serum aminopeptidase activities. Peptides 19:1637–1640

    PubMed  CAS  Google Scholar 

  65. O’Mahony OA, Djahanbahkch O, Mahmood T, Puddefoot JR, Vinson GP (2000) Angiotensin II in human seminal fluid. Human Reproduction 15:1345–1349

    PubMed  CAS  Google Scholar 

  66. DeLong M, Logan JL, Yong KC, Lien YH (2005) Renin–angiotensin blockade reduces serum free testosterone in middle-aged men on haemodialysis and correlates with erythropoietin resistance. Nephrol Dial Transplant 20:585–590

    PubMed  CAS  Google Scholar 

  67. Segarra AB, Prieto I, Banegas I et al (2007) Dietary fat type influence sex steroid levels in serum of male rats. Andrology Update 1:83–91

    Google Scholar 

  68. De Gandarias JM, Casis L, Irazusta J, Echevarria E, Ramirez M (1988) Changes of aminopeptidase activity levels in serum and brain during the estrous cycle of the rat. Horm Metab Res 20:776

    PubMed  Google Scholar 

  69. De Gandarias JM, Casis L, Irazusta J, Echevarria E, Arechaga G, Ramirez M (1989) Lys- and Tyr-arylamidase activities in serum and brain during the estrous cycle of the rat. Acta Endocrinol (Copenh) 121:671–673

    Google Scholar 

  70. Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20:631–652

    Article  PubMed  CAS  Google Scholar 

  71. Smith MC, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96:219–226

    Article  PubMed  CAS  Google Scholar 

  72. Prieto I, Arechaga G, Segarra AB, Alba F, de Gasparo M, Ramirez M (2002) Effects of dehydration on renal aminopeptidase activities in adult male and female rats. Regul Pept 106:27–32

    PubMed  CAS  Google Scholar 

  73. Prieto I, Martinez JM, Ramirez MJ et al (2001) Aminopeptidase activities after water deprivation in male and female rats. Regul Pept 101:189–194

    PubMed  CAS  Google Scholar 

  74. Sim MK, Lim BC (1997) Determination of aminopeptidase X activity in tissues of normo- and hypertensive rats by capillary electrophoresis. J Chromatogr B Biomed Sci Appl 697:259–262

    PubMed  CAS  Google Scholar 

  75. Handa RK, Krebs LT, Harding JW, Handa SE (1998) The angiotensin IV-AT4 receptor system in the rats kidney. Am J Physiol 274:F290–F299

    PubMed  CAS  Google Scholar 

  76. Hamilton TA, Handa RK, Harding JW, Wright JW (2001) A role for Ang IV/AT4 system in mediating natriuresis in the rat. Peptides 22:935–944

    PubMed  CAS  Google Scholar 

  77. Wang YX, Crofton JT, Miller J (1996) Sex difference in urinary concentrating ability of rats with water deprivation. Am J Physiol 270:R550–555

    PubMed  CAS  Google Scholar 

  78. Steiner M, Phillips MI (1988) Renal tubular vasopressin receptors downregulated by dehydration. Am J Physiol 254:C404–410

    PubMed  CAS  Google Scholar 

  79. Ruiz-Opazo N (1998) Identification of a novel dual angiotensin II/vasopressin receptor. Nephrologie 19:417–420

    PubMed  CAS  Google Scholar 

  80. Swenson KL, Sladex CD (1997) Gonadal steroid modulation of vasopressin secretion in response to osmotic stimulation. Endocrinology 138:2089–2097

    PubMed  CAS  Google Scholar 

  81. Sanderink GJ, Artur Y, Schiele F, Gueguen R, Siest G (1988) Alanine aminopeptidase in serum: biological variations and reference limits. Clin Chem 34:1422–1426

    PubMed  CAS  Google Scholar 

  82. Pinto E (2007) Blood pressure and ageing. Postgrad Med J 83:109–114

    PubMed  Google Scholar 

  83. Meade TW, Imeson JD, Gordon D, Peart WS (1983) The epidemiology of plasma renin. Clin Sci 64:273–280

    PubMed  CAS  Google Scholar 

  84. Duggan J, Kilfeather S, O’Brien E, Malley K, Nussberger J (1992) Effects of ageing and hypertension on plasma angiotensin II and platelet angiotensin II receptor density. Am J Hypertens 5:687–693

    PubMed  CAS  Google Scholar 

  85. Jung YS, Lee S, Shin HS (1996) Effects of age on angiotensin II response and antagonistic activity of losartan in rat aorta and liver. Arch Pharmacol Res 19:462–468

    CAS  Google Scholar 

  86. Prieto I, Arechaga G, Ramirez-Exposito MJ, de Gasparo M, Martinez-Martos JM, Ramirez M (2002) Aminopeptidases in the gonads of male and female rats. Fertil Steril 77:802–804

    PubMed  Google Scholar 

  87. Beynon RJ, Bond JS (1994) Proteolytic enzymes, a practical approach. Oxford University Press, Oxford

    Google Scholar 

  88. Hooper NM, Lendeckel U (2004) Aminopeptidases in biology and disease. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  89. Inguimbert N, Coric P, Dhotel H, Bonnard E et al (2005) Synthesis and in vitro activities of new non-peptidic APA inhibitors. J Pept Res 65:175–188

    PubMed  CAS  Google Scholar 

  90. Banegas I, Prieto I, Vives F et al (2004) Plasma aminopeptidase activities in rats after left and right intrastriatal administration of 6-hydroxydopamine. Neuroendocrinology 80:219–224

    PubMed  CAS  Google Scholar 

  91. Turner AJ, Matsas R, Kenny AJ (1985) Are there neuropeptide-specific peptidases? Biochem Pharmacol 34:1347–56

    PubMed  CAS  Google Scholar 

  92. White JD, Stewart KD, Krause JE, McKelvy JF (1985) Biochemistry of peptide-secreting neurons. Physiol Rev 65:553–606

    PubMed  CAS  Google Scholar 

  93. Kannel WB (2000) Incidence and epidemiology of heart failure. Heart Fail Rev 5:167–173

    PubMed  CAS  Google Scholar 

  94. Smith SC Jr, Allen J, Blair SN et al (2006) AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation 113:2363–2372

    PubMed  Google Scholar 

  95. Cho Y, Somer BG, Amatya A (1999) Natriuretic peptides and their therapeutic potential. Heart Dis 1:305–328

    PubMed  CAS  Google Scholar 

  96. Malkin CJ, Pugh PJ, Morris PD et al (2004) Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 90:871–876

    PubMed  CAS  Google Scholar 

  97. Kapoor D, Goodwin E, Channer KS, Jones TH (2006) Testosterone replacement therapy improves insulin resistance, glycaemia control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 154:899–906

    PubMed  CAS  Google Scholar 

  98. Ottenweller JE, Tapp WN, Creighton D, Natelson BH (1988) Aging, stress and chronic disease interact to suppress plasma testosterone in Syrian hamsters. J Gerontol 43:M175–180

    PubMed  CAS  Google Scholar 

  99. Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C (1999) Natural androgens inhibit male atherosclerosis. A study in castrated, cholesterol-fed rabbits. Circ Res 84:813–819

    PubMed  CAS  Google Scholar 

  100. Sheuer J, Malhotra A, Schaible TF, Capasso J (1987) Effects of gonadectomy and hormonal replacement on rat hearts. Circ Res 61:12–19

    Google Scholar 

  101. Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534

    PubMed  CAS  Google Scholar 

  102. English KM, Steeds R, Jones TH, Channer KS (1997) Testosterone and coronary heart disease: is there a link? Q J Med 90:787–791

    CAS  Google Scholar 

  103. Smeets L, Legros JJ (2004) The heart and androgens. Ann Endocrinol (Paris) 65:163–170

    CAS  Google Scholar 

  104. Jones RD, Hugh Jones T, Channer KS (2004) The influence of testosterone upon vascular reactivity. Eur J Endocrinol 151:29–37

    PubMed  CAS  Google Scholar 

  105. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH (2004) The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 89:3313–3318

    PubMed  CAS  Google Scholar 

  106. Haddad RM, Kennedy CC, Caples SM et al (2007) Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc 82:29–39

    PubMed  CAS  Google Scholar 

  107. Wright JW, Amir HZ, Murray CE (1991) Use of aminopeptidase M as a hypotensive agent in spontaneously hypertensive rats. Brain Res Bull 27:545–551

    PubMed  CAS  Google Scholar 

  108. Ramirez M, Prieto I, Martinez JM, Vargas F, Alba F (1997) Renal aminopeptidase activities in animal models of hypertension. Regul Pept 72:155–159

    PubMed  CAS  Google Scholar 

  109. Prieto I, Martinez JM, Hermoso F et al (2001) Effect of valsartan on angiotensin II- and vasopressin-degrading activities in the kidney of normotensive and hypertensive rats. Horm Metab Res 33:559–563

    PubMed  CAS  Google Scholar 

  110. Prieto I, Hermoso F, de Gasparo et al (2003) M Angiotensinase activities in the kidney of renovascular hypertensive rats. Peptides 24:755–760

    PubMed  CAS  Google Scholar 

  111. Prieto I, Hermoso F, de Gasparo M et al (2003) Aminopeptidase activity in renovascular hypertension. Med Sci Monit 9:BR31–BR36

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Junta de Andalucía through grants PAI CVI-221 (Peptides and Peptidases) and CTS 438 (Group for Neurological Diseases Research in Southern Spain). We thank K. Shashok for improving the use of English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez, M., Prieto, I., Alba, F. et al. Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis. Heart Fail Rev 13, 339–353 (2008). https://doi.org/10.1007/s10741-007-9066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9066-6

Keywords

Navigation