Skip to main content

Advertisement

Log in

Effects of exercise training on inflammatory markers in patients with heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiologists now recognize that the cardio-centric model of heart failure does not sufficiently explain the entire traits particular to chronic heart failure. Evidence accumulates, that many features of the syndrome can be explained by the known biological effects of inflammatory mediators. Indeed, when expressed in experimental models at concentrations commonly observed in heart failure, inflammatory mediators such as tumor necrosis factor-α, interleukin-6, and nitric oxide can produce effects that mimic features of heart failure, including (but not limited to) progressive left-ventricular dysfunction, pulmonary edema, left-ventricular remodeling, and cardiomyopathy. As we witness anti-cytokine therapies and other strategies to avoid an increase in cytokines we have been shown that acute bouts of exercise are associated with an increase in pro-inflammatory cytokines and markers of oxidative stress. As a consequence we have been warned exercise may thus even further contribute to the deterioration of heart failure. However, there are several randomized trials which unanimously document that chronic—as opposed to acute bouts of—exercise does not only lead to a reduction of cytokines and oxidative stress, but that patients dramatically benefit by the increase in maximal oxygen consumption, exercise capacity, quality of life, reduction in hospitalization, morbidity, and mortality. Over the past two decades it has become evident that cytokine research has come to stay and that we will continue to see anti-cytokine treatment strategies for our patients. It is the aim of this review to shed some more light on the most commonly investigated and most relevant cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, Dunkman WB, Jacobs W, Francis GS, Flohr KH (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure Results of a Veterans Administration Cooperative Study. N Engl J Med 314:1547–1552

    Article  PubMed  CAS  Google Scholar 

  2. Franciosa JA, Park M, Levine TB (1981) Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 47:33–39

    Article  PubMed  CAS  Google Scholar 

  3. Volterrani M, Clark A, Ludman P, Swan J, Adamopoulos S, Piepoli M, Coats A (1994) Determinants of exercise capacity in chronic heart failure. Eur Heart J 15:801–809

    PubMed  CAS  Google Scholar 

  4. Clark A, Poole-Wilson P, Coats A (1996) Exercise limitation in chronic heart failure: the central role of the periphery. J Am Coll Cardiol 28:1092–1102

    Article  PubMed  CAS  Google Scholar 

  5. Stewart S (2003) Prognosis of patients with heart failure compared with that of common types of cancer. Heart Fail Monit 3:87–94

    PubMed  Google Scholar 

  6. Drechsler K, Dietz R, Klein H, Wollert KC, Storp D, Molling J, Zeymer U, Niebauer J (2005) Euro heart failure survey. Medical treatment not in line with current guidelines. Z Kardiol 94:510–515

    Article  PubMed  CAS  Google Scholar 

  7. Seta Y, Shan K, Bozkurt B, Oral H, Mann DL (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 2:243–249

    Article  PubMed  CAS  Google Scholar 

  8. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    PubMed  CAS  Google Scholar 

  9. Gullestad L, Aukrust P (2001) The cytokine network in heart failure: pathogenic importance and potential therapeutic targets. Heart Fail Monit 2:8–13

    PubMed  CAS  Google Scholar 

  10. Paulus WJ (2000) Cytokines in heart failure. Heart Fail Monit 1:50–56

    PubMed  CAS  Google Scholar 

  11. Kagan BL, Baldwin RL, Munoz D, Wisnieski BJ (1992) Formation of ion-permeable channels by tumor necrosis factor-alpha. Science 255:1427–1430

    Article  PubMed  CAS  Google Scholar 

  12. Niebauer J, Pflaum CD, Clark AL, Strasburger CJ, Hooper J, Poole-Wilson PA, Coats AJ, Anker SD (1998) Deficient insulin-like growth factor I in chronic heart failure predicts altered body composition, anabolic deficiency, cytokine and neurohormonal activation. J Am Coll Cardiol 32:393–397

    Article  PubMed  CAS  Google Scholar 

  13. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72:3666–3670

    Article  PubMed  CAS  Google Scholar 

  14. Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–554

    Article  PubMed  CAS  Google Scholar 

  15. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ, Anker SD (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067

    PubMed  CAS  Google Scholar 

  16. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure [see comments]. Circulation 92:1479–1486

    PubMed  CAS  Google Scholar 

  17. Anker S, Clark A, Kemp M, Salsbury C, Teixeira M, Hellewell P, Coats AJS (1997) Tumour necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J Am Coll Cardiol 30:997–1001

    Article  PubMed  CAS  Google Scholar 

  18. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493

    PubMed  CAS  Google Scholar 

  19. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM (1996) Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy [see comments]. Lancet 347:1151–1155

    Article  PubMed  CAS  Google Scholar 

  20. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE (1989) The cardiovascular response of normal humans to the administration of endotoxin [see comments]. N Engl J Med 321:280–287

    Article  PubMed  CAS  Google Scholar 

  21. Hegewisch S, Weh HJ, Hossfeld DK (1990) TNF-induced cardiomyopathy. Lancet 335:294–295

    Article  PubMed  CAS  Google Scholar 

  22. Anker S, Egerer K, Volk H-D, Kox W, Poole-Wilson P, Coats AJS (1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79:1426–1430

    Article  PubMed  CAS  Google Scholar 

  23. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJS, Anker SD (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842

    Article  PubMed  CAS  Google Scholar 

  24. Peschel T, Schönauer M, Thiele H, Anker SD, Schuler G, Niebauer J (2003) Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail 5:609–614

    Article  PubMed  CAS  Google Scholar 

  25. Liu L, Zhao SP (1999) The changes of circulating tumor necrosis factor levels in patients with congestive heart failure influenced by therapy. Int J Cardiol 69:77–82

    Article  PubMed  CAS  Google Scholar 

  26. Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P (1998) Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351:1091–1093

    Article  PubMed  CAS  Google Scholar 

  27. Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, Mann DL (2001) Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103:1044–1047

    PubMed  CAS  Google Scholar 

  28. Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure [see comments]. Circulation 99:3224–3226

    PubMed  CAS  Google Scholar 

  29. Kalra D, Bozkurt B, Deswal A, Torre-Amione G, Mann DL (2001) Experimental options in the treatment of heart failure: the role of cytokine antagonism. Heart Fail Monit 1:114–121

    PubMed  CAS  Google Scholar 

  30. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602

    Article  PubMed  CAS  Google Scholar 

  31. Aukrust P, Yndestad A, Ueland T, Damas JK, Gullestad L (2006) Anti-inflammatory trials in chronic heart failure. Heart Fail Monit 5:2–9

    PubMed  CAS  Google Scholar 

  32. Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, Nordoy I, Aass H, Espevik T, Simonsen S, Froland SS, Gullestad L (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83:376–382

    Article  PubMed  CAS  Google Scholar 

  33. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M (1998) Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin- 6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398

    Article  PubMed  CAS  Google Scholar 

  34. Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T (1996) Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes [see comments] [published erratum appears in Circulation 1997 Apr 1;95(7):1975]. Circulation 94:2626–2632

    PubMed  CAS  Google Scholar 

  35. Niederseer D, Thaler C, Niebauer J (2007) The failing heart. N Engl J Med 356:2545

    PubMed  CAS  Google Scholar 

  36. Coats AJ, Adamopoulos S, Meyer TE, Conway J, Sleight P (1990) Effects of physical training in chronic heart failure. Lancet 335:63–66

    Article  PubMed  CAS  Google Scholar 

  37. Gordon A, Tyni-Lenne R, Jansson E, Kaijser L, Theodorsson-Norheim E, Sylven C (1997) Improved ventilation and decreased sympathetic stress in chronic heart failure patients following local endurance training with leg muscles. J Card Fail 3:3–12

    Article  PubMed  CAS  Google Scholar 

  38. Kiilavuori K, Näveri H, Leinonen H, Härkönen M (1999) The effect of physical training on hormonal status and exertional hormonal response in patients with chronic congestive heart failure. Eur Heart J 20:456–464

    Article  PubMed  CAS  Google Scholar 

  39. Adamopoulos S, Parissis J, Kroupis C, Georgiadis M, Karatzas D, Karavolias G, Koniavitou K, Coats AJ, Kremastinos DT (2001) Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 22:791–797

    Article  PubMed  CAS  Google Scholar 

  40. Braith RW, Welsch MA, Feigenbaum MS, Kluess HA, Pepine CJ (1999) Neuroendocrine activation in heart failure is modified by endurance exercise training. J Am Coll Cardiol 34:1170–1175

    Article  PubMed  CAS  Google Scholar 

  41. Niebauer J, Clark AL, Webb-Peploe KM, Boger R, Coats AJ (2005) Home-based exercise training modulates pro-oxidant substrates in patients with chronic heart failure. Eur J Heart Fail 7:183–188

    Article  PubMed  CAS  Google Scholar 

  42. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342:454–460

    Article  PubMed  CAS  Google Scholar 

  43. Niebauer J, Clark AL, Webb-Peploe KM, Coats AJ (2005) Exercise training in chronic heart failure: effects on pro-inflammatory markers. Eur J Heart Fail 7:189–193

    Article  PubMed  CAS  Google Scholar 

  44. Keteyian SJ, Levine AB, Brawner CA, Kataoka T, Rogers FJ, Schairer JR, Stein PD, Levine TB, Goldstein S (1996) Exercise training in patients with heart failure. A randomized, controlled trial. Ann Intern Med 124:1051–1057

    PubMed  CAS  Google Scholar 

  45. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I (2003) Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108:530–535

    Article  PubMed  Google Scholar 

  46. Kobayashi N, Tsuruya Y, Iwasawa T, Ikeda N, Hashimoto S, Yasu T, Ueba H, Kubo N, Fujii M, Kawakami M, Saito M (2003) Exercise training in patients with chronic heart failure improves endothelial function predominantly in the trained extremities. Circ J 67:505–510

    Article  PubMed  Google Scholar 

  47. Piepoli MF, Davos C, Francis DP, Coats AJ, ExTraMATCH Collaborative (2004) Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). Br Med J 328:189

    Article  CAS  Google Scholar 

  48. Jenkins RR (1988) Free radical chemistry: relationship to exercise. Sports Med 5:156–170

    Article  PubMed  CAS  Google Scholar 

  49. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, Kratzsch J, Schubert A, Adams V, Schuler G (2005) Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12:401–406

    Article  PubMed  Google Scholar 

  50. Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, Mobius-Winkler S, Schubert A, Schuler G, Hambrecht R (2005) Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 111:1763–1770

    Article  PubMed  CAS  Google Scholar 

  51. Gielen S, Adams V, Möbius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 42:861–868

    Article  PubMed  CAS  Google Scholar 

  52. Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, Weigl C, Schuler G, Hambrecht R (1999) Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 33:959–965

    Article  PubMed  CAS  Google Scholar 

  53. Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kübler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249

    Article  PubMed  CAS  Google Scholar 

  54. Hambrecht R, Adams V, Gielen S, Linke A, Mobius-Winkler S, Yu J, Niebauer J, Jiang H, Fiehn E, Schuler G (1999) Exercise intolerance in patients with chronic heart failure and increased expression of inducible nitric oxide synthase in the skeletal muscle. J Am Coll Cardiol 33:174–179

    Article  PubMed  CAS  Google Scholar 

  55. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

    PubMed  CAS  Google Scholar 

  56. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, Adams V, Riede U, Schuler G (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29:1067–1073

    Article  PubMed  CAS  Google Scholar 

  57. Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J (1997) Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 18:470–479

    PubMed  CAS  Google Scholar 

  58. Takahashi M, Ikeda U, Masuyama J, Kitagawa S, Kasahara T, Saito M, Kano S, Shimada K (1994) Involvement of adhesion molecules in human monocyte adhesion to and transmigration through endothelial cells in vitro. Atherosclerosis 108:73–81

    Article  PubMed  CAS  Google Scholar 

  59. Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179:269–277

    Article  PubMed  CAS  Google Scholar 

  60. Conraads VM, Beckers P, Bosmans J, De Clerck LS, Stevens WJ, Vrints CJ, Brutsaert DL (2002) Combined endurance/resistance training reduces plasma TNF-a receptor levels in patients with chronic heart failure and coronary artery disease. Eur Heart J 23:1854–1860

    Article  PubMed  CAS  Google Scholar 

  61. LeMaitre JP, Harris S, Fox KAA, Denvir M (2004) Change in circulating cytokines after 2 forms of exercise training in chronic stable heat failure. Am Heart J 147:100–105

    Article  PubMed  CAS  Google Scholar 

  62. Niebauer J, Clark AL, Anker SD, Coats AJS (1999) Three year mortality in heart failure patients with very low left ventricular ejection fractions. Int J Cardiol 70:245–247

    Article  PubMed  CAS  Google Scholar 

  63. Anker S, Ponikowski P, Varney S, Chua T, Clark A, Webb-Peploe K, Harrington D, Kox W, Poole-Wilson P, Coats A (1997) Wasting as an independent risk factor for mortality in chronic heart failure. Lancet 349:1050–1053

    Article  PubMed  CAS  Google Scholar 

  64. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–41

    Article  PubMed  CAS  Google Scholar 

  65. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865

    PubMed  CAS  Google Scholar 

  66. Tracey K, Morgello S, Koplin B, Fahey T, Fox K, Aledo A (1990) Metabolic effects of cachectin/tumor necrosis factor are modified by site of production: Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantely acute cachexia. J Clin Invest 86:2014–2024

    Article  PubMed  CAS  Google Scholar 

  67. Torre-Amione G, Kapadia SR, Benedict C, Oral H, Young JB Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 27:1201–1206

    Article  PubMed  CAS  Google Scholar 

  68. Pina IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD, Fletcher BJ, Fleg JL, Myers JN, Sullivan MJ (2003) Exercise and heart failure: a statement from the American heart association vommittee on exercise, rehabilitation, and prevention. Circulation 107:1210–1225

    Article  PubMed  Google Scholar 

  69. Drexler H, Riede U, Münzel T, König H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759

    PubMed  CAS  Google Scholar 

  70. Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH (2001) Physical training in patients with chronic heart failure enhances the expression of genes antioxidative enzymes. J Am Coll Cardiol 38:194–198

    Article  PubMed  CAS  Google Scholar 

  71. Adams V, Yu J, Mobius-Winkler S, Linke A, Weigl C, Hilbrich L, Schuler G, Hambrecht R (1997) Increased inducible nitric oxide synthase in skeletal muscle biopsies from patients with chronic heart failure. Biochem Mol Med 61:152–160

    Article  PubMed  CAS  Google Scholar 

  72. McTiernan CF, Lemster BH, Frye C, Brooks S, Combes A, Feldman AM (1997) Interleukin-1-beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circ Res 81:493–503

    PubMed  CAS  Google Scholar 

  73. Li N, Karin M (1999) Is NF-kB the senosr of oxidative stress? FASEB J 13:1137–1143

    PubMed  CAS  Google Scholar 

  74. Riede U, Förstermann U, Drexler H (1998) Inducible nitric oxide synthase in skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 32:964–969

    Article  PubMed  CAS  Google Scholar 

  75. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, Poole-Wilson PA, Coats AJ (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534

    PubMed  CAS  Google Scholar 

  76. Anker SD, Volterrani M, Pflaum CD, Strasburger CJ, Osterziel KJ, Doehner W, Ranke MB, Poole-Wilson PA, Giustina A, Dietz R, Coats AJ (2001) Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol 38:443–452

    Article  PubMed  CAS  Google Scholar 

  77. Resnicoff M, Burgaud J, Rotman H, Abraham D, Baserga R (1995) Correlation between apoptosis, tumorigenesis, and levels of insulin-factor I receptors. Cancer Res 55:3739–3741

    PubMed  CAS  Google Scholar 

  78. Arteaga CL, Osborne CK (1989) Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res 49:6237–6241

    PubMed  CAS  Google Scholar 

  79. Prager D, Li H, Asa S, Melmed S (1994) Dominant negative inhibition of tumorgenesis in vivo by human insulin-like growth factor-I receptor mutant. Proc Natl Acad Sci 91:2181–2185

    Article  PubMed  CAS  Google Scholar 

  80. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara J, Quaini E, Di Loreto C, Beltrami C, Krajewski S, Reed J, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  PubMed  CAS  Google Scholar 

  81. Wu Y, Tewari M, Cui S, Rubin R (1996) Activation of the insulin-like growth factor-I receptor inhibits tumor necrosis factor-induced cell death. J Cell Physiol 168:499–509

    Article  PubMed  CAS  Google Scholar 

  82. Sugiura T, Tashiro T, Yamamori H, Morishima Y, Otsubo Y, Hayashi N, Furukawa K, Nitta H, Nakajima N, Ishizuka T, Tatibana M, Ino H, Ito I (1997) Effects of insulin-like growth factor-1 on endotoxin translocation in burned rats receiving total parenteral nutrition. Nutrition 13:783–787

    Article  PubMed  CAS  Google Scholar 

  83. Huang K, Chung D, Herndon D (1993) Insulinlike growth factor 1 (IGF-1) reduces gut atrophy and bacterial translocation after severe burn injury. Arch Surg 128:47–53

    PubMed  CAS  Google Scholar 

  84. Hornig B, Maier V, Drexler H (1996) Physical training improves endothelial function in patients with chronic heart failure. Circulation 93:210–214

    PubMed  CAS  Google Scholar 

  85. Gao L, Wang W, Dongmei L, Zucker IH (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115:3095–3102

    Article  PubMed  Google Scholar 

  86. Zucker IH, Pliquett RU (2002) Novel mechanisms of sympatho-excitation in chronic heart failure. Heart Fail Monit 3:2–7

    PubMed  CAS  Google Scholar 

  87. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105:1631–1639

    PubMed  CAS  Google Scholar 

  88. Niebauer J, Dulak J, Chan JR, Tsao PS, Cooke JP (1999) Gene transfer of nitric oxide synthase: effects on endothelial biology. J Am Coll Cardiol 34:1201–1207

    Article  PubMed  CAS  Google Scholar 

  89. Niebauer J, Cooke JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 28:1652–1660

    Article  PubMed  CAS  Google Scholar 

  90. Niebauer J, Maxwell AJ, Lin PS, Tsao PS, Kosek J, Bernstein D, Cooke JP (1999) Impaired aerobic capacity in hypercholesterolemic mice: partial reversal by exercise training. Am J Physiol 276:H1346–H1354

    PubMed  CAS  Google Scholar 

  91. Niebauer J, Maxwell AJ, Lin PS, Wang D, Tsao PS, Cooke JP (2003) NOS inhibition accelerates atherogenesis: Reversal by exercise. Am J Physiol 91:148–153

    Google Scholar 

  92. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087–1094

    PubMed  CAS  Google Scholar 

  93. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Njjar SM, Ellingsen L, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094

    Article  PubMed  Google Scholar 

  94. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O (1985) Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol 17:937–945

    Article  PubMed  CAS  Google Scholar 

  95. Parks DA, Granger DN (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548:87–99

    PubMed  CAS  Google Scholar 

  96. Xia Y, Zweier JL (1995) Substrate control of free radical generation from xanthine oxidase in the post ischemic heart. J Biol Chem 270:18797–18803

    Article  PubMed  CAS  Google Scholar 

  97. Ketai LH, Simon RH, Kreit JW, Grum CM (1987) Plasma hypoxanthine and exercise. Am Rev Respir Dis 136:98–101

    PubMed  CAS  Google Scholar 

  98. Fox IH, Palella TD, Kelley WN (1987) Hyperuricemia: a marker for cell energy crisis. N Engl J Med 317:111–112

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Niebauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niebauer, J. Effects of exercise training on inflammatory markers in patients with heart failure. Heart Fail Rev 13, 39–49 (2008). https://doi.org/10.1007/s10741-007-9050-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9050-1

Keywords

Navigation