Skip to main content

Advertisement

Log in

Myocardial protection in man—from research concept to clinical practice

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocardial protection aims at preventing myocardial tissue loss: (a) In the acute stage, i.e., during primary angioplasty in acute myocardial infarction. In this setup, the attenuation of reperfusion injury is the main target. As a “mechanical” means, post-conditioning has already been tried in man with encouraging results. Pharmacologic interventions that could be of promise are statins, insulin, peptide hormones, including erythropoietin, fibroblast growth factor, and many others. (b) The patient with chronic coronary artery disease offers another paradigm, with the target of avoidance of further myocyte loss through apoptosis and inflammation. Various pharmacologic agents may prove useful in this context, together with exercise and “mechanical” improvement of cardiac function with attenuation of myocardial stretch, which by itself is a noxious influence. A continuous effort toward acute and chronically preserving myocardial integrity is a concept concerning both the researcher and the clinician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in isxhemic myocardium. Circulation 75:1124–1136

    Google Scholar 

  2. Arrell DK, Elliott ST, K-ane LA, Guo Y, Ko YH, Pedersel PL, Robinson J, Murata M, Murphy AM, Marban E, Van Eyk JE (2006) Proteomic analysis of pharmacological preconditioning. Novel protein targets converge to mitochondrial metabolism pathways. Circ Res 99:706–714

    PubMed  CAS  Google Scholar 

  3. Cohen RA, McComb ME (2006) Preconditioning enters the era of “physiological proteomics”. Circ Res 99:663–665

    PubMed  CAS  Google Scholar 

  4. Lang SC, Elsasser A, Scheler C, Vetter S, Tiefenbacher CP, Kubler W, Katus HA, Vogt AM (2006) Myocardial preconditioning and remote renal preconditioning. Identifying a protective factor using proteomic methods? Basic Res Cardiol 101:149–158

    PubMed  CAS  Google Scholar 

  5. Heusch G (2001) Nitroglycerin and delayed preconditioning in humans. Circulation 103:2876–2878

    PubMed  CAS  Google Scholar 

  6. Barbash GI, White HD, Modan M, Van de Werf F (1992) Antecedent angina pectoris predicts worse outcome after myocardial infarction in patients receiving thrombolytic therapy: experience gleaned from the International Tissue Plasminogen Activator/Streptokinase Mortality Trial. J Am Coll Cardiol 20:6–41

    Article  Google Scholar 

  7. Ottani F, Galvani M, Ferrini D (1998) Angina and Cardiac adaptation. In: Baxter GF, Yellon DM (eds) Delayed preconditioning and adaptive cardioprotection. Kluwer Academic Publishers, Dordrecht, pp 209–224

    Google Scholar 

  8. Arslanian-Ergoren C, Patel A, Fang j, Armstrong D, Kline-Rogers E, Duvernoy CS, Eagle KA (2006) Symptoms of men and women presenting with acute coronary syndromes. Am J Cardiol 98:1177–1181

    Google Scholar 

  9. Cokkinos AD, Tzeis S, Moraitis P, Pantos C, Carageorgiou H, Panousopoulos D, Varonos DD, Cokkinos DV (2003) Loss of cardioprotection induced by ischemic preconditioning after an initial ischaemic period in isolated rat hearts. Exp Clin Cardiol 8:5–9

    PubMed  Google Scholar 

  10. Tani M, Honma Y, Hasegawa H, Tamaki K (2001) Direct activation of mitochondrial KATP channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovasc Res 49:56–68

    PubMed  CAS  Google Scholar 

  11. Boengler K, Heusch G, Schulz R (2006) Connexin 43 and ischemic preconditioning: effects of age and disease. Exp Gerontol 41:485–488

    PubMed  CAS  Google Scholar 

  12. Baker EJ Boerboom LE, Olinger GN, Baker JE (1995) Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Physiol 268:H1165–1173

    Google Scholar 

  13. Iwaki K, Chi S, Dillmann WH, Mestril R (1993) Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 87:2023–2032

    PubMed  CAS  Google Scholar 

  14. Baker JE, Holman P, Gross GJ (1999) Preconditioning in immature rabbit hearts: Role of KATP channels. Circulation 99:1249–1254

    PubMed  CAS  Google Scholar 

  15. Awad WI, Shattock MJ, Chambers DJ (1998) Ischemic preconditioning in immature myocardium. Circulation 98:II-206–II-213

    CAS  Google Scholar 

  16. Ravingerova T, Neckar J, Kolar F, Stetka R, Volkovova K, Ziegelhöffer A, Styk J (2001) Ventricular arrhythmias following coronary artery occlusion in rats: is the diabetic heart less or more sensitive to ischaemia? Basic Res Cardiol 96:160–168

    PubMed  CAS  Google Scholar 

  17. Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47:1716–1721

    PubMed  CAS  Google Scholar 

  18. Katakam PV, Jordan JE, Snipes JA, Tlbert CD, Miller AW, Busija DW (2006) Myocardial preconditioning against ischemia-reperfusion injury is abolished in zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol Sept. 28

  19. Thim T, Bentzon JF, Kristiansen SB, Simonsen U, Andersen HL, Wassermann K, Falk E (2006) Size of myocardial infarction induced by ischaemia-reperfusion is unaltered in rats with metabolic syndrome. Clin Sci 110:665–671

    PubMed  Google Scholar 

  20. Szekeres L, Szilvassy Z, Ferdinandy P, Nagy I, Karscu S, Csati S (1997) Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J Mol Cell Cardiol 29:1977–83

    PubMed  CAS  Google Scholar 

  21. Kremastinos D, Bofilis E, Karavolias G, Papalois A, Kaklamanis L, Iliodromitis E (2000) Preconditioning limits myocardial infarct size in hypercholesterolemic rabbits. Atherosclerosis 150:81–85

    PubMed  CAS  Google Scholar 

  22. Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Tzeis SM et al (2001) Long-term thyroxine administration increases HSP70 mRNA expression and attenuates p38MAP kinase activity in response to ischaemia. J Endocrinol 170:207–215

    PubMed  CAS  Google Scholar 

  23. Pantos C. Malliopoulou V, Mourouzis I, Karamanoli E, Paizis I, Steinberg N et al (2002) Long-term thyroxine administration protects the heart in a similar pattern as ischaemic preconditioning. Thyroid 12:325–329

    Google Scholar 

  24. Zhao J, Renner O, Wightman L, Sugden PH, Stewart L, Miller AD, Latchman DS, Marber MS (1998) The expression of constitutively active isotypes of protein kinase C to investigate preconditioning. J Biol Chem 273:23072–23079

    PubMed  CAS  Google Scholar 

  25. Goldenthal MJ, Weiss HR, Marin-Garcia J (2004) Bioenergetic remodelling of heart mitochondria by thyroid hormone. Mol Cellular Biochem 265:97–106

    CAS  Google Scholar 

  26. Salter D, Dyke C, Wechsler A (1992) Triodothyronine (T3) and cardiovascular therapeutics: a review. J Card Surg 4:363–374

    Google Scholar 

  27. Moruzzi P, Doria E, Agostoni PG, Capacchione V, Saganzerla P (1994) Usefulness of l-thyroxine to improve cardiac, and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73:374–378

    PubMed  CAS  Google Scholar 

  28. Moruzzi P, Doria E, Agostoni PG (1996) Medium term effectiveness of l-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101:461–467

    PubMed  CAS  Google Scholar 

  29. Mahaffay KW, Raya T, Pennock G, Morkin E, Goldman S (1995) Left ventricular performance and remodelling in rabbits after myocardial infarction: effects of a thyroid hormone analogue. Circulation 91:794–801

    Google Scholar 

  30. Ojamaa K, Kenessey A, Shenoy R, Klein I (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 279:E1319–1324

    PubMed  CAS  Google Scholar 

  31. Friberg L, Drvota V, Bjelak AH (2002) Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Arch Intern Med 162:1388–1394

    PubMed  CAS  Google Scholar 

  32. Iervasi G, Pinagitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, L´Abbate A, Donato L (2003) Low T3 syndrome. Circulation 107:708–713

    PubMed  Google Scholar 

  33. Hamilton MA, Stevenson LW, Luu M, Walden JA (1990) Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol 16:91–95

    Article  PubMed  CAS  Google Scholar 

  34. Psirropoulos D, Lefkos N, Boudonas F, Efthimiadis A, Vogas V, Keskilidis C, Tsapas G (2002) Heart failure accompanied by sick euthyroid syndeome and exercise training. Curr Opinion Cardiol 17:266–270

    CAS  Google Scholar 

  35. Suzuki Y, Nanno M, Gemma R, Yoshimi T (1992) Plasma free fatty acids, inhibitor of extrathyroidal conversion of T4 to T3 and thyroid hormone binding inhibitor in patients with various nonthyroidal illness. Endocrinol Jpn 39:445–453

    PubMed  CAS  Google Scholar 

  36. Novitzky D, Cooper DK, Swanepoel A (1989) Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothotac Surg 3:140–145

    CAS  Google Scholar 

  37. Mackie A, Booth K, Newburger J et al (2005) A randomized, double-blinded, placebo-controlled trial of tri-iodothyronine in neonatal heart surgery (Abstr.). J Am Coll Cardiol 45:321A

    Google Scholar 

  38. Ranasinghe A, Quinn D, Pagano D, Edwards N, Faroqui M, Graham T Keogh B, Mascaro J, Riddington D, Rooney S, Townend J, Wilson I (2006) Bosner R. Glucose-Insulin-Potassium and Tri-Iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Crirculation 114:I-245–250

    Google Scholar 

  39. Kimura T, Kanda T, Kuwabara A, Shinohara H, Kobayashi I (1997) Participation of the pituitary-thyroid axis in the cardiovascular system in elderly patients with congestive heart failure. J Med 28:75–80

    PubMed  CAS  Google Scholar 

  40. Blumgart HL, Freedberg AS, Kurland GS (1957) Radioactive iodine treatment of antina pectoris and congestive heart failure. Circulation 16:110–118

    PubMed  CAS  Google Scholar 

  41. Gomberg-Maitland M, Frishman WH (1998) Thyroid hormone and cardiovascular disease. Am Heart J 135:187–196

    PubMed  CAS  Google Scholar 

  42. Lekakis J, Papamichael C, Alevizaki M, Piperingos G, Marafelia P, Mantzos J, Stamatelopoulos S, Koutras DA (1997) Flow-mediated, endothelium-dependent vasodilation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high-normal serum thyrotropin (TSH) values. Thyroid 7:411–414

    Article  PubMed  CAS  Google Scholar 

  43. Pantos CI, Tzilalis V, Giannakakis S, Cokkinos DD, Tzeis SM et al (2001) Phenylephrine induced aortic vasoconstriction is attenuated in hyperthyroid rats. Int Angiol 20:181–186

    PubMed  CAS  Google Scholar 

  44. Pantos C. Malliopoulou V, Mourouzis I et al (2003) Propylthiouracil induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion. J Endocrinol 178:427–735

    Google Scholar 

  45. Apstein CS, Menasche P, Lorell BH (1990) Hypoxia, ischaemia, and the hypertrophied myocardium: basic medical and surgical considerations. In: Swynghedauw B (ed). Cardiac hypertrophy and failure. Editions INSERM, Paris, pp 65–87

    Google Scholar 

  46. Cooley DA, Reul GJ, Wukash DC (1972) Ischemic contracture of the heart “stone heart”. Am J Cardiol 29:575–577

    PubMed  CAS  Google Scholar 

  47. Schaper J, Schwarz F, Flameng W, Hehrlein F (1978) Tolerance to ischemia of hypertrophied human hearts during valve replacement. Basic Res Cardiol 73:171–187

    PubMed  CAS  Google Scholar 

  48. Marcus ML, Koyanagi S, Harrison DG, Doty DB, Hiratzka LF, Eastham CL (1983) Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. Am J Med 75:62–66

    PubMed  CAS  Google Scholar 

  49. Speechly-Dick ME, Baxter GF, Yellon DM (1994) Ischemic preconditioning protects hypertrophied myocardium. Cardiovasc Res 28:1025–1029

    PubMed  CAS  Google Scholar 

  50. Pantos CI, Davos CH, Carageorgiou HC, Varonos DV, Cokkinos DV (1996) Ischaemic preconditioning protects against myocardial dysfunction caused by ishaemia in isolated hypertrophied rat hearts. Basic Res Cardiol 91:444–449

    PubMed  CAS  Google Scholar 

  51. Miki T, Miura T, Tsuchiada A, Nakano A, Hasegawa T, Fukuma T, Shimamoto K (2001) Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type receptor activation. Circulation 102:458–463

    Google Scholar 

  52. Ghosh S, Standen NB, Galinanes M (2001) Failure to precondition pathological human myocardium. J Am Coll Cardiol 37:711–718

    PubMed  CAS  Google Scholar 

  53. Efstathiou A, Seraskeris S, Papakonstantinou C, Aidonopoulos A, Lazou A (2001) Differential effect of preconditioning on post-ischaemic myocardial performance in the absence of substantial infarction and in extensively infarced rat hearts. Eur J Cardiothorac Surg 19:493–499

    PubMed  CAS  Google Scholar 

  54. Shimohama T, Suzuki Y, Noda C, Niwano H, Sato K, Masuda T, Kawahara K, Izumi T (2002) Decreased expression of Na+/H+ exchanger isoform 1 (NHE1) in non-infarced myocardium after acute myocardial infarction. Jpn Heart J 43:273–282

    PubMed  CAS  Google Scholar 

  55. Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris Ch, Malliopoulou V, Cokkinos DV (2005) Thyroid hormone receptors α and β1 are downregulated in the post-infarcted rat heart:consequences on the response to ischaemia-reperfusion. Basic Res Cardiol 100:422–432

    PubMed  CAS  Google Scholar 

  56. Murray AJ, Lygate CA, Cole MA, Carr CA, Radda GK, Neubauer S, Clarke K (2006) Insulin resistace, abnormal energy metabolism and increased ischemic damage in the chronically infracted rat heart. Cardiovasc Res 71:149–157

    PubMed  CAS  Google Scholar 

  57. Heusch G (2004) Postconditioning. Old wine in a new bottle? Editorial. J Am Coll Cardiol 44:1111–1112

    PubMed  Google Scholar 

  58. Kin H, Zhao Z-Q, Sun H-Y, Wang N-P, Corvera JS, Halkos ME, Kerandi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62:79–85

    Google Scholar 

  59. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP- sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189

    PubMed  CAS  Google Scholar 

  60. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role ofcoronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101:168–179

    PubMed  CAS  Google Scholar 

  61. Iliodromitis E, Georgiadis M, Cohen M, Downey J, Bofilis E, Kremastinos DT (2006) Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101:502–507

    PubMed  Google Scholar 

  62. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the Human Heart. Circulation 112:2143–2148

    PubMed  Google Scholar 

  63. Mickel HS, Vaishnav YK, Kempski O, von Lubitz D, Weiss JF, Feuerstein G (1987) Breathing 100% oxygen after global brain ischemia in Mongolian gerbils redults in increased lipid peroxidation and increased mortality. Stroke 18:426–430

    PubMed  CAS  Google Scholar 

  64. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M (1999) Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 189:1699–1706

    PubMed  CAS  Google Scholar 

  65. Lambiase PD, Edwards RJ, Cusack MR, Bucknall CA, Redwood SR, Marber MS (2003) Exercise – induced ischemia initates the second window of protection in humans independent of collateral recruitment. J Am Coll Cardiol 41:1174–1182

    PubMed  Google Scholar 

  66. Kelion AD, Webb TP, Gardner MA (2001) The warm-up effect protects against ischemic left ventricular dysfunction in patients with angina. J Am Coll Cardiol 37:705–710

    PubMed  CAS  Google Scholar 

  67. Konstantinov I, arab S, Li J, Goles J, Boscarino C, Mori A, Cukerman E, Dawood F, cheung M, Shimizu M, Liu P, Redington A (2005) The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. J Thorac Cardiovasc Surg 130:1326–1332

    PubMed  CAS  Google Scholar 

  68. Kudej R, Shen Y-T, Peppas A, Huang C-H, Chen W, Yan L, Vatner D, Vatner S (2006) Obligatory role of cardiac nerves and α1-adrenergic receptors for the second window of ischemic preconditioning in conscious pigs. Circ Res 99:1270–1276

    PubMed  CAS  Google Scholar 

  69. Przyklenk K, Darling CE, Dickson EW, Whittaker P (2003) Cardioprotection « outside the box ». Basic Res Cardiol 98:149–157

    PubMed  Google Scholar 

  70. Yellon DM, Alkulaifi AM, Pugsley WB (1993) Preconditioning the human myocardium. Lancet 342:276–277

    PubMed  CAS  Google Scholar 

  71. Szmagala P, Gbure KT, Morawski N et al (1999) A clinical assessment of ischemic preconditioning for aorto-coronary bypass surgery. Cor Europaeum 7:107–111

    Google Scholar 

  72. Verma S, Fedak PW, Weisel RD, Szmitko PE, Badiwala MV, Bonneau D, Latter D, Errett L, LeClerc Y (2004) Off-pump coronary artery bypass surgery: fundamentals for the clinical cardiologist. Circulation 109:1206–1211

    PubMed  Google Scholar 

  73. Liu GS, Thornton J, van Winkle DM, Stanely AWH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    PubMed  CAS  Google Scholar 

  74. Zhao TC, Hines DS, Kukreja RC (2001) Adenosine-induced late precondition in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol 280: H1278–1285

    PubMed  CAS  Google Scholar 

  75. Heidland UE, Heintzen MP, Schwartzkopff B, Strauer BE (2000) Preconditioning during percutaneous transluminal coronary angioplasty by endogenous and exogenous adenosine. Am Heart J 140:813–820

    PubMed  CAS  Google Scholar 

  76. Lee C-H, Low A, Tai B-C et al (2007) Pretreatment with intracoronary adenosine reduces the incidence of myonecrosis after non-urgent percutaneous intervention: a prospective randomized study. Eur Heart J 28:19–25

    PubMed  CAS  Google Scholar 

  77. Claeys MJ, Vrints CJ, Bosmans JM, Conraads VM, Snoeck JP (1996) Aminophylline inhibits adaptation to ischemia during angioplasty. Eur Heart J 17:539–544

    PubMed  CAS  Google Scholar 

  78. Risken N, Zhou Z, Oyer W, Jaspers R, Ramakers B, Brouwer R, Boerman O, Steinmetz N, Smits P, Rongen G (2006) Caffeine prevents protection in two human models of ischemic preconditioning. J Am Coll Cardiol 48:700–707

    Google Scholar 

  79. Grover GJ, Garlid KD (2000) ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695

    PubMed  CAS  Google Scholar 

  80. Cleveland JC, Meldrum DR, Cain VS, Banerjee A, Harken A (1997) Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 96:29–32

    PubMed  CAS  Google Scholar 

  81. Brady P, Terzie A (1998) The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 31:950–956

    PubMed  CAS  Google Scholar 

  82. Wang H, Long C, Duan Z et al (2007) A new ATP-sensitive potassium channel opener protects endothelial function in cultured aortic endothelial cells. Cardiovasc Res 73:497–503

    PubMed  CAS  Google Scholar 

  83. Auchampach JA, Maruyama M, Gross GJ (1994) Cardioprotective actions of potassium channel openers. Eur Heart J 15:C81–84

    Google Scholar 

  84. O´Rourke B (2000) Mitochondrial KATP channels in preconditioning. Circ Res 87:845–855

    CAS  Google Scholar 

  85. Taira N (1989) Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol 63:18J–24J

    PubMed  CAS  Google Scholar 

  86. Iliodromitis EK, Cokkinos P, Zoga A, Steliou I, Vrettou AR, Kremastinos DT (2003) Nicorandil recaptures the waned protection from preconditioning in vivo. Br J Pharmacol 138:1101–1106

    PubMed  CAS  Google Scholar 

  87. Lee T-M, Su S-F, Chou T-F, Lee YT, Tsai C-H (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 105:334–340

    PubMed  CAS  Google Scholar 

  88. The IONA study group (2002) Effect of nicorandil on coronary events in patients with stable angina: The impact of Nicorandil in Angina (IONA) randomized trial. Lancet 359:1269–1267

    Google Scholar 

  89. Johansen D, Ytrehus K, Baxter G (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury. Evidence for a role of K ATP channels.Basic Res Cardiol 101:53–60

    CAS  Google Scholar 

  90. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulphide in vascular sooth muscle. Mol Pharmacol 68:1757–1764

    PubMed  CAS  Google Scholar 

  91. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nuitr 24:539–577

    CAS  Google Scholar 

  92. Zeymer U, Suryapranata H, Monassier JP et al (2001) The Na+/Ca2+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safery and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI trial). J Am Coll Cardiol 38:645–650

    Google Scholar 

  93. Buerke M, Rupprecht H-J, vom Dahl J, Terres W, Seyfurth M, Schultheiss H-P, Richardt G, Sheehan FH, Dexlet H (1999) Sodium-hydrogen exchange inhibition : Novel strategy to prevent myocardial injury following ischemia and reperfusion. Am J Cardiol 83:19G–22G

    PubMed  CAS  Google Scholar 

  94. Piper HM, Abdallah Y, Schäfer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371

    PubMed  CAS  Google Scholar 

  95. Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R (2001) Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 103:2876–2878

    Google Scholar 

  96. Heusch G (2001) Nitroglycerin and delayed preconditioning in humans. Circulation 103:2876–2878

    PubMed  CAS  Google Scholar 

  97. Hasdai D, Behar S, Wallentin L. Danchin N, Gitt AK, Boersma E, Fioretti PM, Simoons ML, Battler A (2002) A prospective survey of the characteristics, treatments and outcomes of patients with acute coronary syndromes in Europe and the Mediterranean basin. Eur Heart J 23:1190–1201

    PubMed  CAS  Google Scholar 

  98. Sbarouni E, Iliodromitis EK, Bofilis E, Kyriakides ZS, Kremastinos DT (1998) Short-term estrogen reduces myocardial infarct size in oophororectomized female rabbits in a dose-dependent manner. Cardiovasc Drugs Ther 12:457–462

    PubMed  CAS  Google Scholar 

  99. Ogita H, Node K, Asanuma H, Sanada S, Liao Y, Takashima S, Asakura M, Mori H, Shizonaki Y, Hori M, Kitakazo M (2002) Amelioration of ischemia and reperfusion-induced myocardial injury by the selective estrogen receptor modulator, raloxifene, in the canine heart. J Am Coll Cardol 40:998–1005

    CAS  Google Scholar 

  100. Sbarouni E, Iliodromitis EK, Bofilis E, Kyriakides ZS, Kremastinos DT (2003) Estrogen alone or combined with medroxyprogesterone but not raloxifene reduce myocardial infarct size. Eur J Pharmacol 467:163–168

    PubMed  CAS  Google Scholar 

  101. English KM, Jones RD, Jones TH, Morice AH, Channer KS (2002) Testosterone acts as a coronary vasodilator by a calcium antagonistic action. J Endocrinol Invest 25:455–458

    PubMed  CAS  Google Scholar 

  102. Callils F, Stromer H, Schwinger RH, Bolck B, Hu K, Frantz S, Leupold A, Beet S, Allolio B, Bonz AM (2003) Administration of testosterone is associated with a reduced susceptibility to myocardial ischemia. Endocrinology 144:4478–4483

    Google Scholar 

  103. Malkin C, Pugh P, West J, van Beek E, Jones TH, Channer KS (2006) Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J 27:57–64

    PubMed  CAS  Google Scholar 

  104. Diel P, Friedel A, Geyer H et al (2007) Characterisation of the pharmacological profile of desoxymethyltestosterone (Madol), a steroid misused for doping. Toxicol Lett 169:64–71

    PubMed  CAS  Google Scholar 

  105. Fischer-Rasokat U, Beyersdorf F, doenst T (2003) Insulin addition after ischemia improves recovery of function equal to ischemic preconditioning in rare heart. Basic Res Cardiol 98:329–336

    PubMed  CAS  Google Scholar 

  106. Podesser BK, Schirnhofer J, Bern3ecker OY, Kröner A, Franz M, Semsroth S, Fellner B, Neumüller J, Hallström S, Wolner E. (2002) Optimizing ischemia/reperfusion in the failing rat heart-improved myocardial protection with acute ACE inhibition. Circulation 106(Suppl I):277–283

    Google Scholar 

  107. Leesar M, Stoddard MF, Manchikalapudi S, Bolli R (1999) Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J Am Coll Cardiol 34:639–650

    PubMed  CAS  Google Scholar 

  108. Schwarz ER, Montino H, Fleischhauer J, Klues HG, vom Dahl J, Hanrath P (1997) Angiotensin II receptor antagonist EXP 3174 reduces infarct size comparable with enalaprilat and augments preconditionng in the pig heart. Cardiovasc Drugs Ther 11:687–695

    PubMed  CAS  Google Scholar 

  109. Nozawa Y, Miura T, Tsuchida A, Kita H, Fukuma T, Shimamoto K (1999) Chronic treatment with an ACE inhibitor, temocapril, lowers the threshold for the infarct size-limiting effect of ischemic preconditioning. Cardiovasc Drugs Ther 13:151–157

    PubMed  CAS  Google Scholar 

  110. Jaberansari MT, Baxter GF, Muller CA, Latouf SE, Röth E, Opie LH, Yellon DM (2001) Angiotensin-converting enzyme inhibition enhances a subthreshold stimulus to elicit delayed preconditioning in pig myocardium. J Am Coll Cardiol 37:1996–2001

    PubMed  CAS  Google Scholar 

  111. Bartling B, Friedrich I, Silber RE, Simm A (2003) Ischemic preconditioning is not cardioprotective in senescent human myocardium. Ann Thorac Surg 76:105–111

    PubMed  Google Scholar 

  112. Hayakawa K, Takemura G, Kanoh M, Li Y, Koda M, Kawase Y, Marwyama R, Okada H, Minatoguchi S, Fujiwara T, Fujiwara H (2003) Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunctio nat the chronic stage. Circulation 108:104–109

    PubMed  Google Scholar 

  113. Cargnoni A, Ceconi C, Bernocchi P, Boraso A, Parrinello G, Curello S, Ferrari R (2000) Reduction of oxidative stress by carvedilol: role in maintenance of ischaemic myocardium viability. Cardiovasc Res 47:556–566

    PubMed  CAS  Google Scholar 

  114. Yue TL, Ma XL, Gu R Ruffolo RR Jr, Feuerstein GZ (1998) Carvedilol inhibits activation of stress-activated protein kin and reduces reperfusion injury in perfused rabbit heart. Eur J Pharmacol 345:61–65

    PubMed  CAS  Google Scholar 

  115. Fan GC, Reu X, Qian J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chre G, Kranias EG (2005) Novel cardioprotective role of a small heart-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation 111:1792–1799

    PubMed  CAS  Google Scholar 

  116. Gasser R, Frey G, Fleckenstein-Grün G, Byon YK, Fleckenstein A (1999) Some observations on Ca-overload in rat ventricular tissue. J Clin Basic Cardiol 2:255–258

    CAS  Google Scholar 

  117. Daly MJ, Elz JS, Nayler WG (1985) The effect of verapamil on ischemia-induced changes to the sarcolemma. J Mol Cell Cardiol 17:667–674

    PubMed  CAS  Google Scholar 

  118. Inagaki K, Kihara Y, Izumi T, Sasayama S (2000) The cardioprotective effects of a new 1,4–benzothiazepine derivative, JTV519, on ischemia/reperfusion-induced Ca2+ overload is isolated rat hearts. Cardiovasc Drug Ther 14:489–495

    CAS  Google Scholar 

  119. Heusch G (1992) Myocardial stunning: a role for calcium antagonists during ischemia? Cardiovasc Res 26:14–19

    PubMed  CAS  Google Scholar 

  120. Garrett JS, Wikman-Coffelt J, Sievers R, Finkbeiner WE, Parmley WW (1987) Verapamil prevents the development of alcoholic dysfunction in hamster myocardium. J Am Coll Cardiol 9:1326–1331

    Article  PubMed  CAS  Google Scholar 

  121. Sievers R, Parmley WW, James T, Wikman-Coffelt J (1983) Energy levels at systole vs diastole in normal hamster hearts vs myopathic hamster hearts. Circ Res 53:759–766

    PubMed  CAS  Google Scholar 

  122. Koller PT, Bergmann SR (1989) Reduction of lipid peroxidation in reperfused isolated rabbit hearts by diltiazem. Circ Res 65:838–845

    PubMed  CAS  Google Scholar 

  123. McVeigh JJ, Lopaschuk GD (1990) Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 259:H1079–H1085

    PubMed  CAS  Google Scholar 

  124. Graslinski MR, Black SC, Kilgore KS, Chou AY, McCormack JG, Lucchesi BR (1994) Cardioprotective effects of ranolazine (RS-43285) in the isolated perfused rabbit heart. Cardiovasc Res 28:1231–1237

    Google Scholar 

  125. Timmis AD, Chaitman BR, Crager M (2006) Effects of ranolazine on exercise tolerance and HbA1c in patients with chronic angina and diabetes. Eur Heart J 27:42–48

    PubMed  CAS  Google Scholar 

  126. Schmidt-Schweda S, Holubarsch C (2999) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci 99:27–35

    Google Scholar 

  127. Detry JM, Sellier P, Pennaforte S, Cokkinos D, Dargie H, Mathes P (1994) Trimetazidine: a new concept in the treatment of angina. Comparison with propranolon in patients with stable angina. Br J Clin Pharmacol 37:279–288

    PubMed  CAS  Google Scholar 

  128. Fabiani JN, Ponzio O, Emerit I, Massonet-Castel S, Paris M, Chevalier P, Jebara V, Carpentier A (1992) Cardioprotective effect of trimetazidine during coronary artery graft surgery. J Cardiovasc Surg 33:486–491

    CAS  Google Scholar 

  129. Mody FV, singh BN, Mohiuddin IH, Coyle KB, Buxton DB, Hansen HW, Sumida R, Schekber HR (1998) Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischemic myocardial tissue: an evaluation by positron emission tomography. Am J Cardiol 82:42K–49K

    PubMed  CAS  Google Scholar 

  130. Pantos C, Bescond-Jacket A, Tzeis S et al (2004) Trimetazidine protects isolated rat hearts against ischemia-reperfusion injury in an experimental timing-dependent manner. Basic Res Cardiol 99:1–7

    Google Scholar 

  131. Cokkinos DV (2001) Can metabolic manipulation reverse myocardial dysfunction? Editorial Eur Heart J 22:2138–2139

    CAS  Google Scholar 

  132. Di Napoli P, Taccardi AA, Barsotti A (2005) Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart 91:161–165

    PubMed  CAS  Google Scholar 

  133. Broderick TL, Quinney A, Barker C, Lopaschuk G (1993) Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87:972–981

    PubMed  CAS  Google Scholar 

  134. Rizos I (2000) Three-year survival of patients with heart failure caused by dilated cardiomyopathy and l-carnitine administration. Am Heart J 139:S120–123

    PubMed  CAS  Google Scholar 

  135. Helton E, Darragh R, Francis P, Fricker J, Jue K, Koch G, Mair D, Pierpont ME, Prochazka JVLS, Winter SC (2000) Metabolic aspects of myocardial disease and a role for l-carnitine in the treatment of childhood cardiomyopathy. Pediatrics 105:1260–1270

    PubMed  CAS  Google Scholar 

  136. Iliceto S, Scrutinio D, Bruzzi P, D´Ambrosio G, Boni L, Di Biase M, Biasco G, Hugenholtz P, Rizzon P, on behalf of the CEDIM Investigators. (1995) Effects of l-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: The L-carnitine ecocardiografia digitalizzata infarto miocardico (CEDIM) trial. J Am Coll Cardiol 26:380–387

    PubMed  CAS  Google Scholar 

  137. Malmberg K, Ryden L, Efendic S, Herlitz J, Nicol P, Waldenström A, Wedel H (1995) Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardol 26:57–65

    CAS  Google Scholar 

  138. Van der Horst IC, Zijlstra F, van´t Hof AW, Doggen CJ, de Boer MJ, Suryapranata H, Hoorntje JC, Dambrink JH, Gans RO, Bilo HJ (2003) Swolle Infarct Study Group. Glucose-insulin potassium infusion in patients treated with primary angioplasty for acute myocardial infarction: the glucose-insulin-potassium study: a randomised trial. J Am Coll Cardiol 42:784–791

    PubMed  Google Scholar 

  139. Jonassen AK, Aasum E, Riemersma RA, Mjos OD, Larsen TS (2001) Glucose-insulin-potassium reduces infarct size when administered during reperfusion. Cardiovasc Drugs Ther 14:615–623

    Google Scholar 

  140. Chaudhuri A, Janicke D, Wilson MF, Tripaty D, Garg R, Bandypadhyay A, Calieri J, Hoffmeyer D, Syed T, Ghanim H, Aljada A, Dandona P (2004) Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation 109:849–854

    PubMed  CAS  Google Scholar 

  141. Bell RM, Yellon DM (2003) Atorvastatin administered at the onset of reperfusion, and independently of lipid lowering, protects the myocardium by up-regulating a prosurvival pathway. J Am Coll Cardiol 41:508–515

    PubMed  CAS  Google Scholar 

  142. Di Napoli P, Taccardi AA, Grilli A, Spina R, Felaco M, Barsotti A, De Caterina R (2001) Simvastatin reduces reperfusion injury by modulating nitric oxide synthase expression: an ex-vivo study in isolated working rat hearts. Cardiovasc Res 51:283–293

    PubMed  CAS  Google Scholar 

  143. Eaton P, Hearse DJ, Shattock MJ (2001) Lipid hydroperoxide modification of proteins during myocardial ischaemia. Cardiovasc Res 51:294–303

    PubMed  CAS  Google Scholar 

  144. Chen H, Li D, Roberts GJ, Saldeen T, Mehta JL (2003) Eicosipentanoic acid inhibits hypoxia-rexygenation-induced injury by attenuating upregulation of MMp–1 in adult rat muyocytes. Cardiovasc Res 59:7–13

    PubMed  CAS  Google Scholar 

  145. Coronel R, Wilms-Schopman FJG, Den Ruijter HM et al (2007) Dietary n–3 fatty acids promote arrhythmias during acute regional myocardial ischemia in isolated pig hearts. Cardiovasc Res 73:386–394

    PubMed  CAS  Google Scholar 

  146. Lee TM, Chou TF (2003) Troglitazone administration limits infarct size by reduced phosphorylation of canine myocardial connexin 43 proteins. Am J Physiol. Heart Circ Physiol 285:H1650–1659

    PubMed  CAS  Google Scholar 

  147. Liu H-R, Tao L, Gao E, Lopez BL, Christopher TA, Willette RN, Ohlstein EH, Yue TL, Ma XL (2004) Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovasc Res 62:135–144

    PubMed  CAS  Google Scholar 

  148. Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, hatterjee PK, Thiemermann C (2002) Ligands of the peroxisome proliferators-actibared receptors (PPAR-gamma and PPAR alpha) reduce myocardial infarct size. Faseb J 16:1027–1040

    PubMed  CAS  Google Scholar 

  149. Bulhak A, Sjoquist P-O, Xu C-B, Edvinsson L, Pernow J (2006) Protection against myocardial ischaemia-reperfusion injury by PPAR-α activation is related to production of nitric oxide and endothelin-1. Basic Res Cardiol 101:244–252

    PubMed  CAS  Google Scholar 

  150. Cuzzocrea S, Mazzon E, Constantino G, Serraino I, De Sarro A, Caputi A (2000) Effects of n-acetylcysteine in rat model of ischemia and reperfusion injury. Cardiovasc Res 47:537–548

    PubMed  CAS  Google Scholar 

  151. Spargias K, Alexopoulos E, Kyrzopoulos S, Iakovis P, Greenwood DC, Manginas A, Voudris V, Pavlides G, Buller CE, Kremastinos D, Cokkinos DV (2004) Ascorbic acid prevents contrast-mediated nephropathy in patiens with renal dysfunction undergoing coronary angiography or intervention. Circulation 110:2837–2842

    PubMed  CAS  Google Scholar 

  152. Nespereira B, Perez-Ilzarbe M, Fernandez P, Fuentes AM, Paramo JA, Rodriguez JA (2003) Vitamins C and E downregulate vascular VEGF and VEGFR–2 expression in apolipoprotein-E-deficient mice. Atherosclerosis 171:67–73

    PubMed  CAS  Google Scholar 

  153. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622

    PubMed  CAS  Google Scholar 

  154. Paraskevaidis IA, Iliodromitis EK, Vlahakos D, Tsiapras DP, Nikolaids A, Marathias A, Michalis A, Kremastinos DT (2005) Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury : immediate and long-term significance. Eur Heart J 26:263–270

    PubMed  CAS  Google Scholar 

  155. Werns SW, Shea MJ, Mitsos SE, Dysko RC, Fantone JC, Schork A, Abrams GD, Pi HB, Lucchesi BR (1986) Reduction of the size of infarction by allopurinol in the ischemic-reperfused canine heart. Circulation 73:518–524

    PubMed  CAS  Google Scholar 

  156. Stull LB, Leppo MK, Szweda L, Gao D, Marban E (2001) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95:1005–1011

    Google Scholar 

  157. Dobsak P, Siegelova J, Eicher JC, Jancik K, Svacinova H, Vascu J, Kuchtickova S, Horky M, Wolf JE (2003) Melatonin protect against ischemia-reperfusion injury and inhibits apoptosis in isolated working rat heart. Physiology 9:179–187

    CAS  Google Scholar 

  158. Reiter RJ, Tan D-X (2003) Review. Melatonin: a nove protective agent against oxidative injury of the ischemia reperfused heart. Cardiovasc Res 58:10–19

    PubMed  CAS  Google Scholar 

  159. Hung L-M, Chen J-K, Huang S-S, Lee R-S, Su M-J (2000) Cardioprotective effect of resveratrol a natural antioxidant derived from grapes. Cardiovasc Res 47:549–555

    PubMed  CAS  Google Scholar 

  160. Anselm E, Chataigneau M, Ndiaye M et al (2007) Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src-and Akt-dependent activation of eNOS. Cardiovasc Res 73:404–413

    PubMed  CAS  Google Scholar 

  161. Skyschally A, Schulz R, Gres P, Korth HG, Heusch G (2003) Attenuation of ischemic preconditioning in pigs by scavenging of free oxyradicals with ascorbic acid. Am J Physiol Heart Circ 284:H648–703

    Google Scholar 

  162. Peart JN, Gross GJ (2004) Morphine-tolerant mice exhibit a profound and persistant cardioprotective phenotype. Circulation 109:1219–1222

    PubMed  CAS  Google Scholar 

  163. Ko SH, Yu CW, Lee SK, Choe H, Chung MJ, Kwak YG, Chae SW, Song HS (1997) Propofol attenuates ischemic-reperfusion injury in the isolated rat heart. Anesth Analg 85:719–724

    PubMed  CAS  Google Scholar 

  164. Javadov SA, Lim KHH, Kerr PM, Suleiman S, Angelini GD, Halestrap AP (2000) Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 45:360–369

    PubMed  CAS  Google Scholar 

  165. Weinbrenner C, Liu GS, Downey JM, Cohen MV (1998) Cyclosporine A limits infarct size even when administered after onset of ischemia. Cardiovasc Res 38:678–684

    PubMed  CAS  Google Scholar 

  166. Borutaite V, Jekabsone A, Morkuniene R, Brown GC (2003) Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome C release and apoptosis induced by heart ischemia. J Moll Cell Cardiol 35:357–366

    CAS  Google Scholar 

  167. Brar BK, Stephanou A, Liao Z et al (2001) Cardiotrophin–1 can protect cardiac myocytes from injury when added both prior to simulated ischemia and at reoxygenation. Cardiovasc Res 51:265–274

    PubMed  CAS  Google Scholar 

  168. Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, Yacoub MH (2001) Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 104: I308–313

    PubMed  CAS  Google Scholar 

  169. Skyschally A, Gres P, Hoffman S et al (2007) Bidirectional role of tumor necrosis factor-a in coronary microembolization. Circ Res 100:140–146

    PubMed  CAS  Google Scholar 

  170. Du Toit EF, Muller CA, McCarthy J, Opie LH (1999) Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleatide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther 290:505–514

    PubMed  CAS  Google Scholar 

  171. Pantos C, Mourouzis I, Tzeis S et al (2003) Dobutamine administration exacerbates postischemic myocardial dysfunction in isolated rat hearts; an effect reversed by thyroxine pre-treatment. Eur J Pharmacol 460:155–161

    PubMed  CAS  Google Scholar 

  172. Schulz R, Rose J, Martin C, Brodde O-E, Heusch G (1993) Development of short-term hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 88:684–695

    PubMed  CAS  Google Scholar 

  173. Tritapepe L, De Santis V, Vitale D, Santulli M, Morelli A, Nofroni I, Puddu PE, Singer M, Pietropaoli P (2006) Preconditioning effects of levosimendan in coronary artery bypass grafting – a pilot study. Br J Anaesth 96:694–700

    PubMed  CAS  Google Scholar 

  174. Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 401:349–356

    PubMed  CAS  Google Scholar 

  175. Rafiee P, Shi Y, Su J, Pritchard KA Jr, Tweddell JS, Baker JE (2005) Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol 100:187–197

    PubMed  CAS  Google Scholar 

  176. Shi Y, Rafiee P, Su J, Pritchard KA Jr, Tweddell JS, Baker JE (2004) Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic Res Cardiol 99:173–182

    PubMed  CAS  Google Scholar 

  177. Cai Z, Manalo D, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108 :79–85

    PubMed  Google Scholar 

  178. Rui T, Fenf Q, Lei M, Peng T, Zhang J, Xu M, Dale Abel E, Xenocostas A, Kvietys PR (2005) Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc Res 65:719–727

    PubMed  CAS  Google Scholar 

  179. Shinmura K, Kodani E, Xuan Y-T, Dawn B, Tang X-T, Bolli R (2003) Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits. J Am Coll Cardiol 41:1183–1194

    PubMed  CAS  Google Scholar 

  180. Przyklenk K, Heusch G (2003) Late preconditioning against myocardial stunning. Does aspirin close the “second window” of endogenous cardioprotection?. J Am Coll Cardiol 41:1195–1197

    PubMed  Google Scholar 

  181. Clerk A, Sugden PH (2006) Inflame my heart (by p38-MAPK). Circ Res 99:455–458

    PubMed  CAS  Google Scholar 

  182. Niavi M, Lee P, Khaper N, Lin P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94:1543–1553

    Google Scholar 

  183. Mann DL (2003) Stress-activated cytokines and the heart. Annu Rev Physiol 65:81–101

    PubMed  CAS  Google Scholar 

  184. Taqueri VR, Mitchell RN, Lichtman AH (2006) Protecting the Pump: controlling myocardial inflammatory responses. Annu, Rev. Physiol. 68:67–95

    Google Scholar 

  185. Fan G-C, Yuan Q, Song G, Wang Y, Chen G, Qian J, Zhou X, Lee Y, Ashraf M, Kranias E (2006) Small hear-shock protein Hsp20 attenuates β-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res 99:1233–1242

    PubMed  CAS  Google Scholar 

  186. Iyer VS, Canty Jr JM (2005) Regional desensitization of β-adrenergic receptor signaling in swine with chronic hibernating myocardium. Circ Res 97:789–795

    PubMed  CAS  Google Scholar 

  187. Tang T, Chin Lai N, Roth DM, Drumm J, Guo T, Lee K-W, Han P-L, Dalton N, Gao MH (2006) Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to β-adrenergic stimulation. Basic Res Cardiol 101:117–126

    PubMed  CAS  Google Scholar 

  188. Leineweber K, Bohm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure. Slayer Savior? Circulation 114:365–367

    Google Scholar 

  189. Cokkinos D.V (2002) Preconditioning – a paradigm of yin and yang. Hell J Cardiol 43:179–182

    Google Scholar 

  190. Menon B, Krishnamurthy P, Kaverina E, Johnson J, Ross R, Singh M, Singh K (2006) Expression of the cytoplasmic domain of β1 integrin induces apoptosis in adult rat ventricular myocytes 9ARVM) via the involvement of caspase-8 and mitochondrial death pathway. Basic Res Cardiol 101:485–493

    PubMed  CAS  Google Scholar 

  191. Kim Y-K, Suarez J, Hu Y, et al (2006) Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 113:2589–2597

    PubMed  CAS  Google Scholar 

  192. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV (2006) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: Potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72

    PubMed  Google Scholar 

  193. Frantz S, Brandes R, Hu K, Rammelt K, Wolf J, Scheuermann h, Ertl G, Bauersachs J (2006) Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol 101:127–132

    PubMed  CAS  Google Scholar 

  194. Shiomi T, Tsutsui H, Matsusaka H, et al (2004) Overexopression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109:544–549

    PubMed  CAS  Google Scholar 

  195. Zhang G-X, Kimura S, Nishiyama A, Shokoji T, Rahman M, Abe Y (2004) ROS during the acute phase of ang II hypertension participates in cardiovascular MAPK activation but not vasoconstriction. Hypertension 43:117–124

    PubMed  CAS  Google Scholar 

  196. Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R, Komuro I (2001) Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun 289:901–907

    PubMed  CAS  Google Scholar 

  197. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y (1995) Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 96:438–446

    Article  PubMed  CAS  Google Scholar 

  198. Bax JJ, Abraham T, Barold S et al (2005) Cardiacresynchronization therapy: Issues during and after device implantation and unresolved questions. J Am Coll Cardiol 46:2168–2182

    PubMed  Google Scholar 

  199. Birks E, Tansley P, Hardy J, George R, Bowles C, Burke M, Banner N, Khaghani A, Yacoub M (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884

    PubMed  CAS  Google Scholar 

  200. Jiang S, Haider H, Idris N, Salim A, Ashraf M (2006) Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784

    PubMed  CAS  Google Scholar 

  201. Klepzig H, Kober G. Matter C, Luus H, Scheneider H, Boedeker KH, Kiowski W, Amman FW, Gruber D, Harris S, Burger W (1999) Sulfonylureas and ischemic preconditioning. Eur Heart J 20:439–446

    PubMed  CAS  Google Scholar 

  202. Weinberg EO, Scherrer- Crosbie M, Picard MH, Nasseri BA, MacGillivray, Cannon J, Lian Q, Bloch KD, Lee RT (2005) Rosuvastatin reduces experimental left ventricular infarct size after ischemia-reperfusion injury but not total coronary occlusion. Am J Physiol-Heart and Circulatory Physiology 288:H1802–H1809

    CAS  Google Scholar 

  203. Von Haehling S, Anker SD (2005) Statins for heart failure: at the crossroads between cholesterol reduction and pleiotropism? Heart 91:1–2

    Google Scholar 

  204. Communal C, Colucci WS (2005) The control of cardiomyocyte apoptosis via the β-adrenergic signaling pathways. Arch Mal Coeur 98:236–241

    PubMed  CAS  Google Scholar 

  205. O’Connor GT, Buring JE, Yusuf S, Goldhaber SZ, Olmstead EM, Paffenbarger RS Jr, Hennekens CH (1989) An overview of randomized trials of rehabilitationm with exercise after myocardial infarction. Circulation 80:234–245

    PubMed  CAS  Google Scholar 

  206. Bellardinelli R, Georgiou D, Cianci G, Purcaro A (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effect on functional capacity, quality of life, and clinical outcome. Circulation 99:1173–1182

    Google Scholar 

  207. Adamopoulos S, Parissis J, Karatzas D et al (2002) Physical training modulated proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. Am Coll Cardiol 29:653–663

    Google Scholar 

  208. Freimann S, Scheinowitz, Yekutieli D, Feinberg MS, Eldar M, Kessler –Icekson G (2005) Prior exercise training improves the outcome of acute myocardial infarction in the rat: Heart structure, funation, and gene expression. J Am Coll Cardiol 45:931–938

    PubMed  Google Scholar 

  209. Ignarro LJ, Balestrieri, Napoli C (2007) Nutrition, physical activity and cardiovascular disease. Cardiovasc Res 73:326–340

    PubMed  CAS  Google Scholar 

  210. Kardami Elissavet, Detillieux KA, Jimenex SK, Cattini PA (2006) Fibroblast growth factor-2. In: Cokkinos DV, Pantos C, Heusch G, Taegthmeyer H (eds) Myocardial ischemia. Springer Sciences and Business Media Inc, New York, pp 144–166

    Google Scholar 

  211. Kloner RA, Rezkalla SH (2004) Cardiac protection during acute myocardial infarction: Where do we stand in 2004? J Am Coll Cardiol 44:276–286

    PubMed  Google Scholar 

  212. Maeng M, Mortensen UM, Kristensen J, Kristiansen SB, Andersen HR (2006) Hypothermia during reperfusion does not reduce myocardial infarct size in pigs. Basic Res Cardiol 101:61–68

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis V. Cokkinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cokkinos, D.V., Pantos, C. Myocardial protection in man—from research concept to clinical practice. Heart Fail Rev 12, 345–362 (2007). https://doi.org/10.1007/s10741-007-9030-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9030-5

Keywords

Navigation