Skip to main content
Log in

The management of conditioned nutritional requirements in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Patients suffering from congestive heart failure exhibit impaired myocardial energy production, myocyte calcium overload and increased oxidative stress. Nutritional factors known to be important for myocardial energy production, calcium homeostasis and the reduction of oxidative stress, such as thiamine, riboflavin, pyridoxine, L-carnitine, coenzyme Q10, creatine and taurine are reduced in this patient population. Furthermore, deficiencies of taurine, carnitine, and thiamine are established primary causes of dilated cardiomyopathy.

Studies in animals and limited trials in humans have shown that dietary replacement of some of these compounds in heart failure can significantly restore depleted levels and may result in improvement in myocardial structure and function as well as exercise capacity. Larger scale studies examining micronutrient depletion in heart failure patients, and the benefits of dietary replacement need to be performed. At the present time, it is our belief that these conditioned nutritional requirements, if unsatisfied, contribute to myocyte dysfunction and loss; thus, restoration of nutritional deficiencies should be part of the overall therapeutic strategy for patients with congestive heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourassa MG, Gurne O, Bangdiwala SI, Ghali JK, Young JB, Rousseau M, Johnstone DE, Yusuf S. Natural history and patterns of current practice in heart failure. J Am Coll Card 1993;22Suppl A:14A–19A

    Article  CAS  Google Scholar 

  2. Cowie MR, Mosterd A, Wood DA, Deckers JW, Poole-Wilson PA, Sutton CG, Grobbee DE, The epidemiology of heart failure. Eur Heart J 1997;18:208–25

    PubMed  CAS  Google Scholar 

  3. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002;347:1397–402

    Article  PubMed  Google Scholar 

  4. Zang XQ, Musch TI, Zelis R, Cheung JY. Effects of impaired calcium homeostasis on contraction in postinfarction myocytes. J App Physiol 1999;86:943–50

    Google Scholar 

  5. Katz AM. The myocardium in congestive heart failure. Am J Cardiol 1989;63:12A–16A

    Article  PubMed  CAS  Google Scholar 

  6. Vogt AM, Kubler W. Heart failure: Is there an energy deficit contributing to contractile dysfunction? Basic Res Cardiol 1998;93:1–10

    Article  PubMed  CAS  Google Scholar 

  7. Clark AL, Sparrow JL, Coates, AJ. Muscle fatigue and dyspnea in chronic heart failure: Two sides of the same coin? Eur Heart J 1995;16:49–52

    PubMed  CAS  Google Scholar 

  8. Freeman LM, Roubenoff R. The nutrition implications of cardiac cachexia. Nutr Rev 1994;52:340–7

    Article  PubMed  CAS  Google Scholar 

  9. Carr JG, Stevenson LW, Walden JA, Herber D. Prevalence and hemodynamic correlates of malnutrition in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1989;63:709–13

    Article  PubMed  CAS  Google Scholar 

  10. Broqvist M, Arnqvist H, Dahlstrom U, Larsson J, Nylander E, Permert J. Nutritional assessment and muscle energy metabolism in severe chronic congestive heart failure: effects of long-term dietary supplementation. Eur Heart J 1994;15:1641–50

    PubMed  CAS  Google Scholar 

  11. Sole MJ, Jeejeebhoy, KN. Conditioned nutritional requirements: Therapeutic relevance to heart failure. Herz 2002;27:174–9

    Article  PubMed  Google Scholar 

  12. Witte KKA, Clark AL, Cleland JGF. Chronic heart failure and micronutrients. J Am Coll Card 2001;37:1765–74

    Article  CAS  Google Scholar 

  13. Isselbacher KJ, Braunwald E, Wilson JD, Martin JB, Fauci AS, Kasper DL, eds. Harrison’s Principles of Internal Medicine, 13th ed. New York: McGraw-Hill Inc.; 1994

    Google Scholar 

  14. Seligmann H, Halkin H, Rauchfleisch S, Kaufmann N, Motro M, Vered Z, Ezra D. Thiamine deficiency in patients with congestive heart failure receiving long-term furosemide therapy: a pilot study. Am J Med 1991;91:151–5

    Article  PubMed  CAS  Google Scholar 

  15. Zenuk C, Healey J, Donnelly J, Vaillancourt R, Almalki Y, Smith S. Thiamine deficiency in congestive heart failure patients receiving long-term furosemide therapy. Can J Clin Pharmacol 2003;10:184–8

    PubMed  Google Scholar 

  16. Brady JA, Rock CL, Horneffer MR. Thiamin status, diuretic medications, and the management of congestive heart failure. J Am Diet Assoc 1995;95:541–4

    Article  PubMed  CAS  Google Scholar 

  17. Kwok T, Falconer-Smith JF, Potter JF, Ives DR. Thiamine status of elderly patients with cardiac failure. Age Ageing 1992;21:67–71

    PubMed  CAS  Google Scholar 

  18. Pfitzenmeyer P, Guilland JC, d’Athis P, Petit-Marneier C, Gaudet M. Thiamine status of elderly patients with cardiac failure including the effects of supplements. Int J Vitam Nutr Res 1994;64:113–8

    PubMed  CAS  Google Scholar 

  19. Yue QY, Beerman B, Lindstrom B, Nyquist O. No difference in blood thiamine diphosphate levels between Swedish Caucasians patients with congestive heart failure treated with furosemide and patients without heart failure. J Intern Med 1997;242:491–5

    Article  PubMed  CAS  Google Scholar 

  20. O’Rourke NP, Bunker VW, Thomas AJ, Finglas PM, Bailer AL, Clayton BE. Thaimine status of healthy and institutionalized elderly subjects: analysis of dietary intake and biochemical indices. Age Ageing 1990;19:325–9

    PubMed  CAS  Google Scholar 

  21. Hardig L, Daae C, Dellborg M, Kontny F, Bohmer T. Reduced thiamine pyrophosphate, but not thiamine diphosphate, in erythrocytes in elderly patients with congestive heart failure treated with furosemide. J Intern Med 2000;247:597–600

    Article  PubMed  CAS  Google Scholar 

  22. Hanninen SA, Darling PB, Sole MJ, Barr A, Keith ME. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. J Am Coll Card 2006:47:354–61

    Article  CAS  Google Scholar 

  23. Mendoza CE, Rodriguez F, Rosenberg DG. Reversal of refractory congestive heart failure after thiamine supplementation: a case report and review of the literature. J Cardiovasc Pharmacol Ther 2003;8:313–6

    PubMed  Google Scholar 

  24. Shimon I, Almog S, Vered Z, Seligmann H, Shefi M, Peleg E, Rosenthal T, Motoro M, Halkin H, Ezra D. Improved left ventricular function after thiamine supplementation in patients with congestive heart failure receiving long-term furosemide therapy. Am J Med 1995;98:485–90

    Article  PubMed  CAS  Google Scholar 

  25. Arsenian MA. Carnitine and its derivatives in cardiovascular disease. Prog Cardiovasc Dis 1997;40:265–86

    Article  PubMed  CAS  Google Scholar 

  26. Schonekess BO, Allard MF, Lopaschuk GD. Proprionyl l-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 1995;77:726–34

    PubMed  CAS  Google Scholar 

  27. Kohlmeier M. Nutriient Metabolism. New York: Academic Press; 2003

    Google Scholar 

  28. Kendler, BS. Supplemental Conditionally Essential Nutrients in Cardiovascular Disease Therapy. J Cardiovas Nurs 2006;21:9–16

    Google Scholar 

  29. Engel AG. Carnitine deficiency syndromes and lipid storage myopathies. In: Engel AG, Banker BQ eds. Myology, basic and clinical Toronto: McGraw-Hill, 1986

  30. Pepine CJ. The therapeutic potential of carnitine in cardiovascular disorders. Clin Ther 1991;13:2–18

    PubMed  CAS  Google Scholar 

  31. Anand I, Chandrashekhan Y, De Giuli F, Pasini E, Mazzoletti A, Confortini R, Ferrar R. Acute and chronic effects of propionyl-L-carnitine on the hemodynamics, exercise capacity, and hormones in patients with congestive heart failure. Cardiovasc Drugs Ther 1998;12:291–9

    Article  PubMed  CAS  Google Scholar 

  32. Risos I. Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J 2000;139:S120–3

    Article  Google Scholar 

  33. Iliceto S, Scrutinio D, Bruzzi P, D’Ambrosio G, Boni L, Di Biase M, Biasco G, Hugenholtz PG, Rizzon P. Effects of L-carnitine adminstration of left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) Trial. J Am Coll Cardiol 1995;26:380–7

    Article  PubMed  CAS  Google Scholar 

  34. Iyler R, Gupta A, Khan A, Hiremath S, Lokhandwala Y. Does left ventricular function improve with L-carnitine after acute myocardial infarction? J Postgrad Med 1999;45:38–41

    Google Scholar 

  35. Littarru GP. Energy and defense: Facts and perspectives on coenzyme Q10 in biology and medicine. Rome: Casa Editrice Scientifica Internazionale; 1995

    Google Scholar 

  36. Tomano Y, Hasegawa J, Seki T, Motegi K, Morishita N. Pharmokinetic study of deuterium-labelled coenzyme Q10 in man. Int J Clin Pharmacol Ther Toxicol 1986;24:536–41

    Google Scholar 

  37. Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta 1992;1126:247–54

    PubMed  CAS  Google Scholar 

  38. Ghirlanda G, Oradei A, Manto A, Lippa S, Uccisoli L, Caputo S, Greco AV, Littarru GP. Evidence of plasma COQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J Clinc Pharmacol 1993;33:226–9

    CAS  Google Scholar 

  39. Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, Tamagama H. Lovastatin decreases coenzyme Q levels in humans. Proc Natl Acad Sci USA 1990;87:8931–4

    Article  PubMed  CAS  Google Scholar 

  40. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci USA 1985;82:4240–4

    Article  PubMed  Google Scholar 

  41. Soja AM, Mortensen SA. Treatment of congestive heart failure with coenzyme Q10 illuminated by meta-analysis of clinical trials. Mol Aspects Med 1997;18:S159–68

    Article  PubMed  CAS  Google Scholar 

  42. Morisco C, Trimarco B, Condorelli M. Effect of coenzyme Q10 therapy in patients with congestive heart failure: a long-term multicenter randomized study. Clin Invest 1993;71:S134–6

    Article  CAS  Google Scholar 

  43. Sacher HL, Sacher ML, Landau SW, Kersten R, Dooley F, Sacher A, Sacher M, Dietrick K, Ichkhan K. The clinical and hemodynamic effects of coenzyme Q10 in congestive cardiomyopathy. Am J Ther 1997;4:66–72

    PubMed  CAS  Google Scholar 

  44. Hofman-Bang C, Rehnqvist N, Swedberg K, Wiklund I, Astrom H. Coenzyme Q10 as an adjunctive in the treatment of chronic congestive heart failure. The Q10 Study Group. J Card Fail1995;1:101–7

    Article  PubMed  CAS  Google Scholar 

  45. Berman M, Erman A, Ben-Gal T, Dvir D, Georghiou GP, Stamler A, Vered Y, Vidne BA, Aravot D. Coenzyme Q10 in patients with end-stage heart failure awating cardiac transplantation: a randomized, placebo-controlled study. Clin Cardiol 2004;27:295–9

    PubMed  Google Scholar 

  46. Permanetter B, Rossy W, Klein G, Weingartner F, Seidl KF, Blomer H. Ubiquinone (coenzyme Q10) in the long-term treatment of idiopathic dilated cardiomyopathy. Eur Heart J 1992;13:1528–33

    PubMed  CAS  Google Scholar 

  47. Khatta M, Alexander BS, Krichten CM, Fisher ML, Freudenberger R, Robinson SW, Gottlieb SS. The effect of coenzyme Q10 in patients with congestive heart failure. Ann Intern Med 2000;132:636–40

    PubMed  CAS  Google Scholar 

  48. Baggio E, Gandini R, Plancher AC, Passeri M, Carmosino G. Italian multicenter study on the safety and efficacy of coenzyme Q10 as adjunctive therapy in heart failure (interm analysis). The CoQ10 Drug Surveillance Investigators. Clin Invest 1993;71:S145–9

    Article  CAS  Google Scholar 

  49. Wyss M, Walliman T. Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 1994;133/134:51–6

    Article  Google Scholar 

  50. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD. Creatine kinase system in failing and nonfailing human myocardium. Circulation 1996;94:1894–901

    PubMed  CAS  Google Scholar 

  51. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertle G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 1997;96:2190–6

    PubMed  CAS  Google Scholar 

  52. Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 1996;271:E31–7

    PubMed  CAS  Google Scholar 

  53. Gordon A, Hultman, E, Kaijser L. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovascular Res 1995;30:413–8

    Article  CAS  Google Scholar 

  54. Azuma J, Sawamura A, Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ 1992;56:95–9

    CAS  Google Scholar 

  55. Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett 2003;226:195–202

    Article  PubMed  CAS  Google Scholar 

  56. Grimble RF, Jackson AA, Persaud C, Wride MJ, Delers F, Engler R. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J Nutrition 1992;122:2066–73

    CAS  Google Scholar 

  57. Pion PD, Kittleson MD, Rogers QR, Morris JG. Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 1987;237:764–8

    PubMed  CAS  Google Scholar 

  58. Fascetti AL, Reed JR, Rogers QR, Backus RC. Taurine deficiency in dogs with dilated cardiomyopathy: 12 cases. J Am Vet Med Assoc 2003;223:1137–41

    Article  PubMed  CAS  Google Scholar 

  59. Schaffer SW, Allo S, Harada H, Mozaffari M. Potentation of myocardial ischemic injury by drug-induced taurine depletion. In: The biology of taurine. Huxtable RJ, Franconi F, Giotti A, eds. New York: Plenum Press; 1987:151–8

    Google Scholar 

  60. Crass MF 3rd, Lombardini JB. Loss of cardiac muscle taurine after acute left ventricular ischemia. Life Sci 1977;21:951–8

    Article  PubMed  CAS  Google Scholar 

  61. Kramer JH, Chovan JP, Schaffer SW. The effect of taurine on calcium paradox and ischemic heart failure. Am J Physiol 1981;240:H238–46

    PubMed  CAS  Google Scholar 

  62. Azari J, Brumbaugh P, Barbeau A, Huxtable R. Taurine decreases lesion severity in the hearts of cardiomyopathic Syrian hamsters. Can J Neurol Sci 1980;7:435–40

    PubMed  CAS  Google Scholar 

  63. Takihara K, Azuma J, Awata N. Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am Heart J 1986;112:1278–84

    Article  PubMed  CAS  Google Scholar 

  64. Oudit GY, Trivieri MG, Khaper N, Hussain T, Wilson GJ, Liu P, Sole MJ, Backx PH. Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron overload murine model. Circulation 2004;109:1877–85

    Article  PubMed  CAS  Google Scholar 

  65. Ball AM, Sole MJ. Oxidative stress and the pathogenesis of heart failure. Cardiol Clin 1998;16:665–75

    Article  PubMed  CAS  Google Scholar 

  66. Singh N, Dhalla AK, Seneviratne C, Singal PK. Oxidative stress and heart failure. Mol Cell Biochem 1995;147:77–81

    Article  PubMed  CAS  Google Scholar 

  67. Li RK, Sole MJ, Mickle DA, Schimmer J, Goldstein D. Vitamin E and oxidative stress in the heart of the cardiomyopathic Syrian hamster. Free Rad Biol Med 1997;24:252–8

    Article  Google Scholar 

  68. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–6

    Article  PubMed  CAS  Google Scholar 

  69. Ghatak A, Brar MJ, Agarwal A, Goel N, Rastogi AK, Vaish AK, Sircar AR, Chandra M. Oxy free radical system in heart failure and therapeutic role of vitamin E. Int J Cardiol 1996;57:119–27

    Article  PubMed  CAS  Google Scholar 

  70. Keith ME, Jeejeebhoy KN, Langer A, Kurian R, Barr A, O’Kelly B, Sole MJ. A controlled clinical trial of vitamin E supplementation in patients with congestive heart failure. Am J Clin Nutr 2001;73:219–24

    PubMed  CAS  Google Scholar 

  71. The Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000;342:154–60

    Article  Google Scholar 

  72. Virtamo J, Rapola JM, Ripatti S, Heinonen OP, Taylor PR, Albanes D, Huttunen JK. Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease. Arch Intern Med 1998;158:668–75

    Article  PubMed  CAS  Google Scholar 

  73. Keith ME, Ball A, Jeejeebhoy KN, Kurian R, Butany J, Dawood F, Wen WH, Madapallimattam A, Sole MJ. Conditioned nutritional deficiencies in the cardiomyopathic hamster heart. Can J Cardiol 2001;17:449–58

    PubMed  CAS  Google Scholar 

  74. Jeejeebhoy F, Keith M, Freeman M, Barr A, McCall M, Kurian R, Mazer D, Errett L. Nutritional supplementation with MyoVive repletes essential cardiac myocyte nutrients and reduces leftventricular size in patients with left ventricular dysfunction. Am Heart J 2002;143:1092–100

    Article  PubMed  CAS  Google Scholar 

  75. Witte KK, Nikitin NP, Parker AC, von Haehling S, Volk HD, Anker SD, Clark AL, Cleland JG. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J 2005;26:2238–44

    Article  PubMed  CAS  Google Scholar 

  76. Hunt SA, American College of Cardiology, American Heart Association Task Force on Practice Guidelines. ACC/AHA 2005 guideline update for the diagnosis andmanagement of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 2005;46:e1–82

    Article  PubMed  Google Scholar 

  77. Liu P, Arnold JM, Belenkie I, Demers C, Dorian P, Gianetti N, Haddad H, Howlett J, Ignnazewski A, Jong P, McKelvie R, Moe G., Parker JD et al. for the Canadian Cardiovascular Society. Can J Cardiol 2003;19:347–56

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allard, M.L., Jeejeebhoy, K.N. & Sole, M.J. The management of conditioned nutritional requirements in heart failure. Heart Fail Rev 11, 75–82 (2006). https://doi.org/10.1007/s10741-006-9195-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-006-9195-3

Keywords

Navigation