Skip to main content
Log in

Two-phase flows in pipes and capillary channels

  • Review
  • Published:
High Temperature Aims and scope

Abstract

This review is devoted to analysis of two-phase flow patterns in capillary channels. Studies are considered in which flow pattern maps are obtained of two-phase flow in channels of different cross sections with the transverse dimension ranging from 20 µm to 255 mm. Data on flow patterns are systematized and given in tables. The impact made by capillary effects is analyzed compared to the influence of other factors under conditions of two-phase flow in channels. The classification of channels based on the degree of manifestation of capillarity is validated. Characteristic features of two-phase flow in channels of noncircular cross section are considered. It is demonstrated that thermocapillary effects may be significant under conditions of nonisothermal two-phase flow in microchannels and under conditions of weak effect of gravitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandikar, S.G., Microchannels and Minichannels-History, Terminology, Classification and Current Research Needs, Proc. I Int. Conf. on Microchannels and Minichannels, Rochester, ASME, 2003, p. 1.

    Google Scholar 

  2. Ohta, H., Boiling and Two-Phase Flow in Channels with Extremely Small Dimensions-Review of Japanese Researches, Proc. II Int. Conf. on Microchannels and Minichannels, Rochester, 2004, p. 97.

  3. Schmidt, R., Challenges in Electronic Cooling-Opportunities for Enhanced Thermal Management Techniques-Microprocessor Liquid Cooled Minichannel Heat Sink, Proc. I Int. Conf. on Microchannels and Minichannels, Rochester, 2003, p. 951.

  4. Bar-Cohen, A., Sherwood, G., Hodes, M., and Solbreken, G.L., IEEE Trans. CPMT A, 1995, vol. 18, p. 502.

    Google Scholar 

  5. Kabov, O.A., Kuznetsov, V.V., and Legros, J.-C., Proc. II Int. Conf. on Microchannels and Minichannels, Rochester, ASME, 2004, p. 687.

    Google Scholar 

  6. Overholt, M.R., McCandless, A., Kelly, K.W. et al., Micro-Jet Arrays for Cooling of Electronic Equipment, Proc. III Int. Conf. on Microchannels and Minichannels, Toronto, 2005, ICMM2005-75250.

  7. Trabold, T.A., Minichannels in Polymer Electrolyte Membrane Fuel Cells, Proc. II Int. Conf. on Microchannels and Minichannels, Rochester, 2004, p. 119.

  8. Maidanik, Yu.F., State-of-Art of CPL and LHP Technology, Proc. 11th Int. Heat Pipe Conf., Tokyo, 1999, p. 19.

  9. Kabov, O.A., Marchuk, I.V., and Legros, J.-C., Conjugated Heat Transfer at Flow Condensation in Minichannel with Longitudinal Fins, Proc. II Int. Conf. on Microchannels and Minichannels, Rochester, ASME, 2004, p. 641.

    Google Scholar 

  10. Kariyasaki, A., Yamasaki, Y., Fukano, T. et al., Separation of Air from Two-Phase Air-Water Mixture Flowing in a Mini Channel, Proc. III Int. Conf. on Microchannels and Minichannels, Toronto, 2005, ICMM2005-75057.

  11. Kabov, O.A., Iorio, C.S., Colinet, P., and Legros, J.-C., Two-Phase Flow Pattern and Pressure Drop in a Microchannel, Proc. I Int. Conf. on Microchannels and Minichannels, Rochester, ASME, 2003, p. 465.

    Google Scholar 

  12. Baker, T., Oil Gas J., 1954, vol. 53, no. 12, p. 85.

    Google Scholar 

  13. Wallis, B.G., One-Dimensional Two-Phase Flow, New York: McGraw—Hill, 1969.

    Google Scholar 

  14. Weisman, J., Duncan, D., Gibson, J., Crawford, T., Int. J. Multiphase Flow, 1979, vol. 5, p. 437.

    Article  Google Scholar 

  15. Mandhane, J.M., Gregogy, G., and Aziz, K., Int. J. Multiphase Flow, 1974, vol. 1, p. 537.

    Article  Google Scholar 

  16. Taitel, Y. and Duckler, A.E., AIChE J., 1976, vol. 22, no. 1, p. 47.

    Article  Google Scholar 

  17. Barnea, D., Shoham, O., Taitel, Y., and Duckler, A.E., Int. J. Multiphase Flow, 1980, vol. 6, p. 217.

    Article  Google Scholar 

  18. Lin, P.Y. and Hanratty, T.Y., Int. J. Multiphase Flow, 1987, vol. 13, no. 4, p. 549.

    Article  Google Scholar 

  19. Suo, M. and Griffith, P., Trans. ASME J. Basic Eng. D, 1964, vol. 86, no. 3, p. 182.

    Google Scholar 

  20. Barajast, A.M. and Panton, R.L., Int. J. Multiphase Flow, 1993, vol. 19, no. 2, p. 337.

    Article  Google Scholar 

  21. Damianides, C.A. and Westwater, J.W., Two-Phase Flow Patterns in a Compact Heat Exchanger and in Small Tubes, Proc. 2nd UK Nat. Conf. on Heat Transfer, 1988, vol. II, p. 1257.

    Google Scholar 

  22. Chen, W.L., Twu, M.C., and Pan, C., Int. J. Multiphase Flow, 2002, vol. 28, p. 1235.

    Article  MATH  Google Scholar 

  23. Fukano, T. and Kariysaki, A., Nucl. Eng. Des., 1993, vol. 141, p. 59.

    Article  Google Scholar 

  24. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., and Sadowski, D.L., Int. J. Multiphase Flow, 1999, vol. 25, p. 377.

    Article  MATH  Google Scholar 

  25. Coleman, J.W. and Garimella, S., Int. J. Heat Mass Transfer, 1999, vol. 42, p. 2869.

    Article  Google Scholar 

  26. Yang, C.-Y. and Shieh, C.-C., Int. J. Multiphase Flow, 2001, vol. 27, p. 1163.

    Article  MATH  Google Scholar 

  27. Mishima, K. and Hibiki, T., Int. J. Multiphase Flow, 1996, vol. 22, no. 4, p. 703.

    Article  MATH  Google Scholar 

  28. Kariyasaki, A., Fukano, T., Ousaka, A., and Kagawa, M., Trans. JSME B, 1992, vol. 58, p. 2684.

    Google Scholar 

  29. Huo, X., Chen, L., Tian, Y., and Karayiannis, T., Appl. Therm. Eng., 2004, vol. 24, p. 1225.

    Article  Google Scholar 

  30. Kawahara, A., Chung, P.M.-Y., and Kawaji, M., Int. J. Multiphase Flow, 2002, vol. 28, p. 1411.

    Article  MATH  Google Scholar 

  31. Kawaji, M. and Chung, P.M.-Y., Unique Characteristics of Adiabatic Gas-Liquid Flow in Microchannels: Diameter and Shape Effects on Flow Pattern, Void Fraction and Pressure Drop, Proc. I Int. Conf. on Microchannels and Minichannels, Rochester, ASME, 2003, p. 115.

    Google Scholar 

  32. Rezkallah, K.S., Int. J. Multiphase Flow, 1990, vol. 16, no. 2, p. 243.

    Article  MATH  Google Scholar 

  33. Chung, P.M.-Y. and Kawaji, M., Int. J. Multiphase Flow, 2004, vol. 30, p. 735.

    Article  MATH  Google Scholar 

  34. Serizawa, A., Feng, Z., and Kawarw, Z., Exp. Therm. Fluids Sci., 2002, vol. 26, p. 703.

    Article  Google Scholar 

  35. Lazarek, G.M. and Black, H.S., Int. J. Heat Mass Transfer, 1982, vol. 25, p. 945.

    Article  Google Scholar 

  36. Barnea, D., Luninski, Y., and Taitel, Y., Can. J. Chem. Eng., 1983, vol. 761, p. 617.

    Article  Google Scholar 

  37. Fukano, T., Kariyasaki, A., and Kagawa, M., Trans. JSME B, 1990, vol. 56, p. 2318.

    Google Scholar 

  38. Lin, S., Kwok, C.C.K., Li, R.Y. et al., Int. J. Multiphase Flow, 1991, vol. 17, no. 1, p. 95.

    Article  MATH  Google Scholar 

  39. Lin, S., Kew, P.A., and Cornwell, K., Int. J. Heat Technol., 1999, vol. 17, no. 2, p. 63.

    Google Scholar 

  40. Lockhart, R.W. and Martinelli, R.C., Chem. Eng. Prog., 1949, vol. 45, no. 1, p. 39.

    Google Scholar 

  41. Akbar, M.K., Plummer, D.A., and Ghiaasiaan, S.M., Int. J. Multiphase Flow, 2003, vol. 29, p. 855.

    Article  MATH  Google Scholar 

  42. Beinusov, A.G., Khoze, A.N., and Chelkas, A.Ya., Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1978, no. 2, p. 170.

  43. Mishima, K., Hibiki, T., and Nishihara, H., Int. J. Multiphase Flow, 1993, vol. 19, no. 1, p. 115.

    Article  MATH  Google Scholar 

  44. Kabov, O.A., Lyulin, Yu.V., Marchuk, I.V., and Zaitsev, D.V., Locally Heated Annular Liquid Films in Microchannels and Minichannels, Proc. ECI Int. Conf. on Heat Transfer and Fluid Flow in Microscale, Castelvecchio Pascoli, 2005, Keynote lecture KL6, CD-ROM by ECI.

  45. Nakoryakov, V.E., Kuznetsov, V.V., and Vitovsky, O.V., Int. J. Multiphase Flow, 1992, vol. 18, no. 3, p. 313.

    Article  MATH  Google Scholar 

  46. Wambganss, M.W., Jendrzeiczyk, J.A., and France, D.M., Int. J. Multiphase Flow, 1991, vol. 17, no. 3, p. 327.

    Article  Google Scholar 

  47. Cubaud, T. and Ho, C.-M., Phys. Fluids, 2004, vol. 16, no. 12, p. 4575.

    Article  ADS  Google Scholar 

  48. Kolb, W.B. and Cerro, R.L., J. Colloid Interface Sci., 1993, vol. 159, p. 302.

    Article  Google Scholar 

  49. Richardson, B.L., Some Problems in Horizontal Two-Phase Two-Component Flow, Ph. D. Dissertation, Indiana: Purdue Univ., 1958.

    Google Scholar 

  50. Hosler, E.R., AIChE Symp. Ser. 64, 1968, p. 54.

  51. Jones, O.C., Jr. and Zuber, N., Int. J. Multiphase Flow, 1975, vol. 2, p. 273.

    Article  Google Scholar 

  52. Sadatomi, M., Sato, Y., and Saruwatari, S., Int. J. Multiphase Flow, 1982, vol. 8, p. 641.

    Article  Google Scholar 

  53. Tronewski, L. and Ulbrich, R., Chem. Eng. Sci., 1984, vol. 39, p. 751.

    Article  Google Scholar 

  54. Lowry, B. and Kawaji, M., AIChE Symp. Ser. 84, 1988, p. 133.

  55. Wilmarth, T. and Ishii, M., Int. J. Heat Mass Transfer, 1994, vol. 37, p. 1749.

    Article  Google Scholar 

  56. Xu, J.L., Cheng, P., and Zhao, T.S., Int. J. Multiphase Flow, 1999, vol. 25, p. 412.

    Article  Google Scholar 

  57. Wolk, J., Dreyer, M., and Rath, H.J., Int. J. Multiphase Flow, 2000, vol. 26, p. 1037.

    Article  Google Scholar 

  58. Bi, Q.C. and Zao, T.S., Int. J. Multiphase Flow, 2001, vol. 27, p. 561.

    Article  MATH  Google Scholar 

  59. Satitchaicharoen, P. and Wongwises, S., Int. J. Multiphase Flow, 2004, vol. 30, p. 225.

    Article  MATH  Google Scholar 

  60. White, E.T. and Beardmore, R.N., Chem. Eng. Sci., 1962, vol. 17, no. 5, p. 351.

    Article  Google Scholar 

  61. Viana, F., Pardo, R., Ynez, R. et al., J. Fluid Mech., 2003, vol. 494, p. 379.

    Article  MATH  ADS  Google Scholar 

  62. Grigor’ev, V.A. and Krokhin, Yu.I., Teplofiz. Vys. Temp., 1971, vol. 9, no. 6, p. 1237.

    Google Scholar 

  63. Maxworthy, T., Bubbles Rise in Tapered Tubes, Proc. 1st World Conf. Exp. on Heat Transfer, Dubrovnik, 1988, p. 358.

  64. Chinnov, E.A. and Kravchenko, D.N., Izv. Sib. Otd. Akad. Nauk SSSR Ser. Tekh. Nauk, 1990, no. 1, p. 120.

  65. Korneev, S.D. and Korneev, A.D., An Investigation of Motion of Solitary Gas Bubbles in Plane-Parallel Slit Channels, Sb. Nauchn. Tr. Mosk. Energ. Inst., 1987, no. 133, p. 19.

  66. Kuznetsov, V.V. and Shamirzaev, A.S., Heat Transfer in Boiling under Constrained Conditions, Tret’ya Rossiiskaya natsional’naya konferentsiya po teploobmenu (The Third Russian National Conference on Heat Transfer), Moscow: Izd. MEI (Moscow Inst. of Power Engineering), 2002, vol. 4, p. 119.

    Google Scholar 

  67. Kuznetsov, V.V., Shamirzaev, A.S., and Ershov, I.N., The Motion of Gas Slugs in Small-Sized Rectangular Channels, Tezisy dokladov XXVIII Sibirskogo teplofizicheskogo seminara (Abstracts of Papers to the XXVIII Siberian Thermophysical Seminar), Novosibirsk: Inst. of Thermophysics, Siberian Div., Russian Acad. Sci., 2005, p. 125.

    Google Scholar 

  68. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Gos. Izd. Fizmatlit, 1959.

    Google Scholar 

  69. Colinet, P., Legros, J.-C., and Velarde, M.G., Nonlinear Dynamics of Surface-Tension Driven Instabilities, Wiley, VCH, 2001.

  70. Kabov, O.A., Kuznetsov, V.V., Marchuk, I.V. et al., Poverkhnost’, 2001, no. 9, p. 83.

  71. Pshenichnikov, A.F. and Tokmenina, G.L., Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1983, no. 3, p. 150.

  72. Kabov. O.A. and Chinnov, E.A., Teplofiz. Vys. Temp., 2001, vol. 39, no. 5, p. 758 (High Temp. (Engl. transl.), vol. 39, no.5, p. 703).

    Google Scholar 

  73. Young, N.O., Goldstein, J.S., and Block, M.J., J. Fluid Mech., 1959, vol. 3, p. 350.

    Article  ADS  Google Scholar 

  74. Kuznetsov, V.M., Lugovtsov, B.A., and Sher, E.I., Prikl. Mekh. Tekh. Fiz., 1966, no. 1, p. 124.

  75. Wozniak, G., Balasubramaniam, R., Hadland, P.H., and Subramanian, R.S., Exp. Fluids, 2001, p. 84.

  76. Mazouchi, A. and Homsy, G.M., Phys. Fluids, 2000, vol. 12, p. 542.

    Article  ADS  MATH  Google Scholar 

  77. Mazouchi, A. and Homsy, G.M., Phys. Fluids, 2001, vol. 13, p. 1594.

    Article  ADS  Google Scholar 

  78. Lajeunesse, E. and Homsy, G.M., Phys. Fluids, 2003, vol. 15, p. 308.

    Article  ADS  Google Scholar 

  79. Bezuglyi, B.A. and Ivanova, N.A., Pis’ma Zh. Tekh. Fiz., 2002, vol. 28, issue 19, p. 71.

    Google Scholar 

  80. Kenning, D.B.R. and Kao, Y.S., Int. J. Heat Mass Transfer, 1972, vol. 15, p. 1709.

    Article  Google Scholar 

  81. Monde, M., Mihara, S., Mitsutake, Y., and Shinohara, K., Warme und Stoffubertragung, 1989, vol. 24, p. 321.

    Article  ADS  Google Scholar 

  82. Chinnov, E.A., Diatlov, A.V., and Kravchenko, D.N., J. Enhanced Heat Transfer, 1996, vol. 3, no. 3, p. 177.

    Google Scholar 

  83. Chinnov, E.A., J. Enhanced Heat Transfer, 1999, vol. 6, p. 369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 44, No. 5, 2006, pp. 777–795.

Original Russian Text Copyright © 2006 by E. A. Chinnov and O. A. Kabov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinnov, E.A., Kabov, O.A. Two-phase flows in pipes and capillary channels. High Temp 44, 773–791 (2006). https://doi.org/10.1007/s10740-006-0094-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-006-0094-z

Keywords

Navigation