Skip to main content

Advertisement

Log in

Differential expression of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3 and phosphorylated-ERK1/2 during mouse tooth development

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Connective tissue growth factor (CTGF) is a downstream mediator of transforming growth factor-beta 1 (TGF-β1) and TGF-β1-induced CTGF expression is regulated through SMAD and mitogen-activated protein kinase (MAPK) signaling pathways. The fine modulation of TGF-β1 signaling is very important to the process of tooth development. However, little is known about the localization of CTGF, MAPK and SMAD in the context of TGF-β1 signaling during odontogenesis. Hence, we aimed to investigate the expression of TGF-β1, CTGF, phosphorylated-SMAD2/3 (p-SMAD2/3) and phosphorylated-ERK1/2 (p-ERK1/2). ICR mice heads of embryonic (E) day 13.5, E14.5, E16.5, postnatal (PN) day 0.5 and PN3.5 were processed for immunohistochemistry. Results revealed that at E13.5, TGF-β1 and CTGF were strongly expressed in dental epithelium (DE) and dental mesenchyme (DM), while p-SMAD2/3 was intensely expressed in the internal side of DE. p-ERK1/2 was not present in DE or DM. At E14.5 and E16.5, strong staining for TGF-β1 and CTGF was detected in enamel knot (EK) and dental papilla (DPL). DPL was intensely stained for p-ERK1/2 but negatively stained for p-SMAD2/3. There was no staining for p-SMAD2/3 and p-ERK1/2 in EK. At PN0.5 and PN3.5, moderate to intense staining for TGF-β1 and CTGF was evident in preameloblasts (PA), secretary ameloblasts (SA) and dental pulp (DP). p-SMAD2/3 was strongly expressed in SA and DP but sparsely localized in PA. p-ERK1/2 was intensely expressed in DP, although negative staining was observed in PA and SA. These data demonstrate that TGF-β1 and CTGF show an identical expression pattern, while p-SMAD2/3 and p-ERK1/2 exhibit differential expression, and indicate that p-SMAD2/3 and p-ERK1/2 might play a regulatory role in TGF-β1 induced CTGF expression during tooth development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnott JA, Zhang X, Sanjay A, Owen TA, Smock SL, Rehman S, DeLong WG, Safadi FF, Popoff SN (2008) Molecular requirements for induction of CTGF expression by TGF-beta1 in primary osteoblasts. Bone 42:871–885. doi: 10.1016/j.bone.2008.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai Y, Mah A, Crohin C, Groff S, Bringas P Jr, Le T, Santos V, Slavkin HC (1994) Specific transforming growth factor-beta subtypes regulate embryonic mouse Meckel’s cartilage and tooth development. Dev Biol 162:85–103

    Article  CAS  PubMed  Google Scholar 

  • Cho KW, Cho SW, Lee JM, Lee MJ, Gang HS, Jung HS (2008) Expression of phosphorylated forms of ERK, MEK, PTEN and PI3K in mouse oral development. Gene Expr Patterns 8:284–290. doi: 10.1016/j.gep.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • D’Souza RN, Happonen RP, Ritter NM, Butler WT (1990) Temporal and spatial patterns of transforming growth factor-beta 1 expression in developing rat molars. Arch Oral Biol 35:957–965

    Article  PubMed  Google Scholar 

  • Du J, Wang Q, Yang P, Wang X (2016) FHL2 mediates tooth development and human dental pulp cell differentiation into odontoblasts, partially by interacting with Runx2. J Mol Histol 47:195–202. doi: 10.1007/s10735-016-9655-6

    Article  CAS  PubMed  Google Scholar 

  • Goodwin AF, Tidyman WE, Jheon AH, Sharir A, Zheng X, Charles C, Fagin JA, McMahon M, Diekwisch TG, Ganss B, Rauen KA, Klein OD (2014) Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet 23:682–692. doi: 10.1093/hmg/ddt455

    Article  CAS  PubMed  Google Scholar 

  • Hongo S, Yamamoto T, Yamashiro K, Shimoe M, Tomikawa K, Ugawa Y, Kochi S, Ideguchi H, Maeda H, Takashiba S (2016) Smad2 overexpression enhances adhesion of gingival epithelial cells. Arch Oral Biol 71:46–53. doi: 10.1016/j.archoralbio.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  • Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH (2008) Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 39:153–160

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Zhao J, Mogharei A, Shuler CF, Weinstein M, Deng C, Chai Y (2001) Antagonistic effects of Smad2 versus Smad7 are sensitive to their expression level during tooth development. J Biol Chem 276:44163–44172

    Article  CAS  PubMed  Google Scholar 

  • Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24:5742–5750

    Article  CAS  PubMed  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ge S, Yang P (2014) Immunohistochemical localization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-smad2/3 in the developing periodontium of rats. J Periodontal Res 49:624–633. doi: 10.1111/jre.12143

    Article  CAS  PubMed  Google Scholar 

  • Lian M, Zhang Y, Shen Q, Xing J, Lu X, Huang D, Cao P, Shen S, Zheng K, Zhang J, Chen J, Wang Y, Feng G, Feng X (2016) JAB1 accelerates odontogenic differentiation of dental pulp stem cells. J Mol Histol 47:317–324. doi: 10.1007/s10735-016-9672-5

    Article  CAS  PubMed  Google Scholar 

  • Matias MA, Li H, Young WG, Bartold PM (2003) Immunohistochemical localization of fibromodulin in the periodontium during cementogenesis and root formation in the rat molar. J Periodontal Res 38:502–507

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Gudey SK, Landström M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20. doi: 10.1007/s00441-011-1201-y

    Article  CAS  PubMed  Google Scholar 

  • Muromachi K, Kamio N, Narita T, Annen-Kamio M, Sugiya H, Matsushima K (2012) MMP-3 provokes CTGF/CCN2 production independently of protease activity and dependently on dynamin-related endocytosis, which contributes to human dental pulp cell migration. J Cell Biochem 113:1348–1358. doi: 10.1002/jcb.24007

    Article  CAS  PubMed  Google Scholar 

  • Muromachi K, Kamio N, Matsuki-Fukushima M, Nishimura H, Tani-Ishii N, Sugiya H, Matsushima K (2015) CCN2/CTGF expression via cellular uptake of BMP-1 is associated with reparative dentinogenesis. Oral Dis 21:778–784. doi: 10.1111/odi.12347

    Article  CAS  PubMed  Google Scholar 

  • Pacheco MS, Reis AH, Aguiar DP, Lyons KM, Abreu JG (2008) Dynamic analysis of the expression of the TGF-β/smad2 pathway and CTGF during early steps of tooth development. Cells Tissues Organs 187:199–210

    Article  CAS  PubMed  Google Scholar 

  • Porto IM, Merzel J, de Sousa FB, Bachmann L, Cury JA, Line SR, Gerlach RF (2009) Enamel mineralization in the absence of maturation stage ameloblasts. Arch Oral Biol 54:313–321. doi: 10.1016/j.archoralbio.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Li L, Wang D, Li S, Chen Z, An Z (2016) Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development. J Mol Histol 47:337–344. doi: 10.1007/s10735-016-9675-2

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Wu C, Billings PC, Piddington R, Rosenbloom J, Pacifici M, Koyama E (2002) Expression, gene regulation, and roles of Fisp12/CTGF in developing tooth germs. Dev Dyn 224:267–278

    Article  CAS  PubMed  Google Scholar 

  • Simon S, Smith AJ, Lumley PJ, Berdal A, Smith G, Finney S, Cooper PR (2009) Molecular characterization of young and mature odontoblasts. Bone 45:693–703. doi: 10.1016/j.bone.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  • Sloan AJ, Smith AJ (1999) Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1–3 in vitro. Arch Oral Biol 44:149–156

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Kubota S, Murakashi E, Fukada T, Hashimoto S, Takigawa M, Numabe Y (2009) Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and periodontal ligament cells. J Periodontal Res 44:161–169. doi: 10.1111/j.1600-0765.2008.01093.x

    Article  CAS  PubMed  Google Scholar 

  • Teraishi T, Miura K, Imaki J (2008) An optimized immunohistochemical method for detection of phosphorylated mitogen-activated protein kinases. J Immunol Methods 330:34–43

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Aberg T (1999) Molecular regulation of tooth development. Bone 25:123–125

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Keränen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  CAS  PubMed  Google Scholar 

  • Vaahtokari A, Aberg T, Jernvall J, Keränen S, Thesleff I (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54:39–43

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Han J, Ito Y, Bringas P Jr, Deng C, Chai Y (2008) Ectodermal Smad4 and p38 MAPK are functionally redundant in mediating TGF-beta/BMP signaling during tooth and palate development. Dev Cell 15:322–329. doi: 10.1016/j.devcel.2008.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaai T, Nakanishi T, Asano M, Nawachi K, Yoshimichi G, Ohyama K, Komori T, Sugimoto T, Takigawa M (2005) Gene expression of connective tissue growth factor (CTGF/CCN2) in calcifying tissues of normal and cbfa1-null mutant mice in late stage of embryonic development. J Bone Miner Metab 23:280–288

    Article  CAS  PubMed  Google Scholar 

  • Yongchaitrakul T, Pavasant P (2007) Transforming growth factor-beta1 up-regulates the expression of nerve growth factor through mitogen-activated protein kinase signaling pathways in dental pulp cells. Eur J Oral Sci 115:57–63

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba K, Yoshiba N, Aberdam D, Meneguzzi G, Perrin-Schmitt F, Stoetzel C, Ruch JV, Lesot H (2000) Differential expression of laminin-5 subunits during incisor and molar development in the mouse. Int J Dev Bio 44:337–340

    CAS  Google Scholar 

  • Yoshimoto T, Fujita T, Kajiya M, Matsuda S, Ouhara K, Shiba H, Kurihara H (2015) Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine 75:165–173. doi: 10.1016/j.cyto.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jani P, Liang T, Lu Y, Qin C (2017) Inactivation of bone morphogenetic protein 1 (Bmp1) and tolloid-like 1 (Tll1) in cells expressing type I collagen leads to dental and periodontal defects in mice. J Mol Histol 48:83–98. doi: 10.1007/s10735-016-9708-x

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Guo S, Zhang Y, Weng Y, Wang L, Ma J (2017) GATA4 regulates osteoblastic differentiation and bone remodeling via p38-mediated signaling. J Mol Histol 48:187–197. doi: 10.1007/s10735-017-9719-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Zhejiang Province Natural Science Foundation (Grant No: LY16H140005) and Wenzhou Science and Technology Planning Project (Grant No: Y20150077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihuai Pan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Pan, Y. Differential expression of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3 and phosphorylated-ERK1/2 during mouse tooth development. J Mol Hist 48, 347–355 (2017). https://doi.org/10.1007/s10735-017-9733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-017-9733-4

Keywords

Navigation