Skip to main content

Advertisement

Log in

Post heroin dose tissue distribution of 6-monoacetylmorphine (6-MAM) with MALDI imaging

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Heroin is an illicit opioid drug which is commonly abused and leads to dependence and addiction. Heroin is considered a pro-drug and is rapidly converted to its major active metabolite 6-monoacetylmorphine (6-MAM) which mediates euphoria and reward through the stimulation of opioid receptors in the brain. The aim of this study was to investigate the distribution and localization of 6-MAM in the healthy Sprague Dawley rat brain following intraperitoneal (i.p) administration of heroin (10 mg/kg), using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), in combination with quantification via liquid chromatography mass spectrometry (LC–MS/MS). These findings revealed that 6-MAM is present both in plasma and brain tissue with a Tmax of 5 min (2.8 µg/mL) and 15 min (1.1 µg/mL), respectively. MSI analysis of the brain showed high intensities of 6-MAM in the thalamus-hypothalamus and mesocorticolimbic system including areas of the cortex, caudate putamen, and ventral pallidum regions. This finding correlates with the distribution of opioid receptors in the brain, according to literature. In addition, we report a time-dependent distribution in the levels of 6-MAM, from 1 min with the highest intensity of the drug observed at 15 min, with sparse distribution at 45 min before decreasing at 60 min. This is the first study to use MSI as a brain imaging technique to detect a morphine’s distribution over time in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JM, Ripel Å, Boix F, Normann PT, Mørland J (2009) Increased locomotor activity induced by heroin in mice: pharmacokinetic demonstration of heroin acting as a prodrug for the mediator 6-monoacetylmorphine in vivo. J Pharm Exp Ther 331:153–161

    Article  CAS  Google Scholar 

  • Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 134:393–405

    Article  CAS  PubMed  Google Scholar 

  • Baijnath S et al (2015) Evidence for the presence of clofazimine and its distribution in the healthy mouse brain. J Mol Histol 46:439–442

    Article  CAS  PubMed  Google Scholar 

  • Baijnath S et al (2016a) Neuroprotective potential of Linezolid: a quantitative and distribution study via mass spectrometry. J Mol Histol 47:429–435

    Article  CAS  PubMed  Google Scholar 

  • Baijnath S, Shobo A, Bester LA, Singh SD, Kruger G, Naicker T, Govender T (2016b) Small molecule distribution in rat lung: a comparison of various cryoprotectants as inflation media and their applicability to MSI. J Mol Histol 47:213–219

    Article  CAS  PubMed  Google Scholar 

  • Berthoud H-R (2007) Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol Behav 91:486–498

    Article  CAS  PubMed  Google Scholar 

  • Boix F, Andersen JM, Mørland J (2013) Pharmacokinetic modeling of subcutaneous heroin and its metabolites in blood and brain of mice. Addict Biol 18:1–7

    Article  CAS  PubMed  Google Scholar 

  • Djurendic-Brenesel M, Pilija V, Mimica-Dukic N, Budakov B, Cvjeticanin S (2012) Distribution of opiate alkaloids in brain tissue of experimental animals. Interdiscip Toxicol 5:173–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E.M.A (2009) European Medicines Agency, C.H.M.P. Committee for Medicinal Products for Human Use

  • Firestone LL, Gyulai F, Mintun M, Adler LJ, Urso K, Winter PM (1996) Human brain activity response to fentanyl imaged by positron emission tomography. Anesth Analg 82:1247–1251

    CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Kassed CA, Chang L (2007) Imaging the addicted human brain. Sci Pract Perspect 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Geibprasert S, Gallucci M, Krings T (2010) Addictive illegal drugs: structural neuroimaging. Am J Neuroradiol 31:803–808

    Article  CAS  PubMed  Google Scholar 

  • Gottås A, Øiestad E, Boix F, Vindenes V, Ripel Å, Thaulow C, Mørland J (2013) Levels of heroin and its metabolites in blood and brain extracellular fluid after iv heroin administration to freely moving rats. Br J Pharmacol 170:546–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Groeneveld G, de Puit M, Bleay S, Bradshaw R, Francese S (2015) Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques. Sci Rep 5:11716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammers A, Lingford-Hughes A (2007) Opioid imaging. Neuroimaging Clin N Am 2:67–89

    Google Scholar 

  • Inturrisi CE, Schultz M, Shin S, Umans J, Angel L, Simon E (1983) Evidence from opiate binding studies that heroin acts through its metabolites. Life Sci 33:773–776

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Raleigh MD, Pentel PR, Harmon TM, Keyler DE, Remmel RP, Birnbaum AK (2013) Stability of heroin, 6-monoacetylmorphine, and morphine in biological samples and validation of an LC–MS assay for delayed analyses of pharmacokinetic samples in rats. J Pharm Biomed Anal 74:291–297

    Article  CAS  PubMed  Google Scholar 

  • Kuhar MJ, Pert CB, Snyder SH (1973) Regional distribution of opiate receptor binding in monkey and human brain. Nature 245:447–450

    Article  CAS  PubMed  Google Scholar 

  • Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Lever JR (2007) PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development. Curr Pharm Des 13:33–49

    Article  CAS  PubMed  Google Scholar 

  • Magangane P, Sookhayi R, Govender D, Naidoo R (2016) Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients. J Mol Histol 47:565–577

    Article  CAS  PubMed  Google Scholar 

  • Munyeza CF et al (2016) Rapid and widespread distribution of doxycycline in rat brain: a mass spectrometric imaging study. Xenobiotica 46:385–392

    Article  CAS  PubMed  Google Scholar 

  • NIDA (2016) Heroin. http://www.drugabuse.gov/drugs-abuse/heroin. Accessed 03 Aug 2016

  • Oldendorf W, Hyman S, Braun L, Oldendorf S (1972) Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178:984–986

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1994) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol 45:330–334

    CAS  PubMed  Google Scholar 

  • Roda G et al. (2016) Determination of 6-monoacetyl-morphine (6-MAM) in brain samples from heroin fatalities. Pharm Anal Acta 6:451. doi:10.4172/2153-2435.1000451

    Google Scholar 

  • Rook EJ, Huitema AD, Ree JMv, Beijnen JH (2006) Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: review of the literature. Curr Clin Pharmacol 1:109–118

    Article  CAS  PubMed  Google Scholar 

  • Salmon AY, Goren Z, Avissar Y, Soreq H (1999) Human erythrocyte but not brain acetylcholinesterase hydrolyses heroin to morphine. Clin Exp Pharmacol Physiol 26:596–600

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer TE et al (1998) Site of opioid action in the human brain: mu and kappa agonists’ subjective and cerebral blood flow effects. Am J Psychiatry 155:470–473

    Article  CAS  PubMed  Google Scholar 

  • Selley DE, Cao C-C, Sexton T, Schwegel JA, Martin TJ, Childers SR (2001) μ Opioid receptor-mediated G-protein activation by heroin metabolites: evidence for greater efficacy of 6-monoacetylmorphine compared with morphine. Biochem Pharmacol 62:447–455

    Article  CAS  PubMed  Google Scholar 

  • Shobo A et al (2015a) MALDI MSI and LCMS/MS: towards preclinical determination of the neurotoxic potential of fluoroquinolones. Drug Test Anal 8:832–838

    Article  PubMed  Google Scholar 

  • Shobo A et al (2015b) Visualization of time-dependent distribution of rifampicin in rat brain using MALDI MSI and quantitative LCMS/MS. Assay Drug Dev Technol 13:277–284

    Article  CAS  PubMed  Google Scholar 

  • Shobo A et al (2015c) Tissue distribution of pretomanid in rat brain via mass spectrometry imaging. Xenobiotica 46:247–252

    Article  PubMed  Google Scholar 

  • Sim LJ, Childers SR (1997) Anatomical distribution of mu, delta, and kappa opioid-and nociceptin/orphanin FQ-stimulated [35S] Guanylyl-5′-O-(γ-Thio)-triphosphate binding in guinea pig brain. J Comp Neurol 386:562–572

    Article  CAS  PubMed  Google Scholar 

  • Trescot AM, Datta S, Lee M, Hansen H (2008) Opioid pharmacology. Pain Physician 11:S133–S153

    PubMed  Google Scholar 

  • Vorm O, Roepstorff P, Mann M (1994) Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal Chem 66:3281–3287

    Article  CAS  Google Scholar 

  • Wagner CC, Langer O (2011) Approaches using molecular imaging technology—use of PET in clinical microdose studies. Adv Drug Deliv Rev 63:539–546

    Article  CAS  PubMed  Google Scholar 

  • WHO (2013) Opioid overdose: preventing and reducing opioid overdose mortality. United Nations Office, Austria

    Google Scholar 

  • Xi ZX, Wu G, Stein EA, Li SJ (2004) Opiate tolerance by heroin self-administration: an fMRI study in rat. Magn Reson Med 52:108–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Surapaneni S (2012) ADME-enabling technologies in drug design and development. Wiley, Hoboken

    Book  Google Scholar 

  • Zubieta J-K, Dannals RF, Frost JJ (1999) Gender and age influences on human brain mu-opioid receptor binding measured by PET. Am J Psychiatry 156:842–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Foundation, SA; Aspenpharmacare, SA; and the University of KwaZulu-Natal, Durban, SA for having funded this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thavendran Govender.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teklezgi, B.G., Pamreddy, A., Baijnath, S. et al. Post heroin dose tissue distribution of 6-monoacetylmorphine (6-MAM) with MALDI imaging. J Mol Hist 48, 285–292 (2017). https://doi.org/10.1007/s10735-017-9726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-017-9726-3

Keywords

Navigation