Skip to main content

Advertisement

Log in

Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Victims with extensive and deep burns are unable to regenerate eccrine sweat glands. Combining of stem cells and biomimetic ECM to generate cell-based 3D tissues is showing promise for tissue repair and regeneration. We co-cultured BrdU-labeled bone marrow-derived mesenchymal stem cells (BM-MSCs) and eccrine sweat gland cells in Matrigel for 2 weeks in vitro and then evaluated for BM-MSCs differentiation into functional eccrine sweat gland cells by morphological assessment and immunohistochemical double staining for BrdU/pancytokeratin, BrdU/ZO-2, BrdU/E-cadherin, BrdU/desmoglein-2, BrdU/Na+–K+-ATPase α, BrdU/NHE1 and BrdU/CFTR. Cells formed spheroid-like structures in Matrigel, and BrdU-labeled BM-MSCs were involved in the 3D reconstitution of eccrine sweat gland tissues, and the incorporated BM-MSCs expressed an epithelial cell marker (pancytokeratin), epithelial cell junction proteins (ZO-2, E-cadherin and desmoglein-2) and functional proteins of eccrine sweat glands (Na+–K+-ATPase α, NHE1 and CFTR). In conclusion, three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes the transdifferentiation of BM-MSCs into potentially functional eccrine sweat gland cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

AEC:

3-Amino-9-ethylcarbazole

BCIP/NBT:

5-Bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium

BM-MSCs:

Bone marrow-derived mesenchymal stem cells

BPE:

Bovine pituitary extract

CFTR:

Cystic fibrosis transmembrane conductance regulator

DMEM/F12:

Dulbecco’s modified Eagle’s medium/Ham’s F12 (1:1)

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

HE:

Hematoxylin and eosin

FGF:

Fibroblast growth factor

IGF:

Insulin-like growth factor

KSFM:

Keratinocyte serum-free medium

Matrigel:

Matrigel basement membrane matrix

MSCs:

Mesenchymal stem cells

NHE1:

Sodium–hydrogen exchanger 1

PBS:

Phosphate-buffered saline

rhEGF:

Recombinant human epidermal growth factor

TGF-β:

Transforming growth factor beta

References

  • Brown MB, Haack KK, Pollack BP, Millard-Stafford M, McCarty NA (2011) Low abundance of sweat duct Cl-channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise. Am J Physiol Regul Integr Comp Physiol 300:R605–R615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheema FH, Polvani G, Argenziano M, Pesce M (2012) Combining stem cells and tissue engineering in cardiovascular repair—a step forward to derivation of novel implants with enhanced function and self-renewal characteristics. Recent Pat Cardiovasc Drug Discov 7:10–20

    Article  CAS  PubMed  Google Scholar 

  • Cooke ME, Allon AA, Cheng T et al (2011) Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthr Cartil OARS Osteoarthr Res Soc 19:1210–1218

    Article  CAS  Google Scholar 

  • Deng W, Han Q, Liao L et al (2005) Engrafted bone marrow-derived flk-(1 +) mesenchymal stem cells regenerate skin tissue. Tissue Eng 11:110–119

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Li J, Sun X, Sun T, Sheng Z (2005a) Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc 13:102–108

    Google Scholar 

  • Fu X, Li X, Cheng B, Chen W, Sheng Z (2005b) Engineered growth factors and cutaneous wound healing: success and possible questions in the past 10 years. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc 13:122–130

    Google Scholar 

  • Fu X, Qu Z, Sheng Z (2006) Potentiality of mesenchymal stem cells in regeneration of sweat glands. J Surg Res 136:204–208

    Article  PubMed  Google Scholar 

  • Granger D, Marsolais M, Burry J, Laprade R (2003) Na+/H+ exchangers in the human eccrine sweat duct. Am J Physiol Cell Physiol 285:C1047–C1058

    Article  CAS  PubMed  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  • Li H, Fu X, Ouyang Y, Cai C, Wang J, Sun T (2006) Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res 326:725–736

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen L, Zhang M, Tang S, Fu X (2013) Three-dimensional culture and identification of human eccrine sweat glands in Matrigel basement membrane matrix. Cell Tissue Res 354:897–902

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang X, Zeng S et al (2014) The cellular localization of Na(+)/H(+) exchanger 1, cystic fibrosis transmembrane conductance regulator, potassium channel, epithelial sodium channel gamma and vacuolar-type H+-ATPase in human eccrine sweat glands. Acta Histochem 116:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen L, Zeng S et al (2015) Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice. Exp Cell Res 332:67–77

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang Z, Yan X et al (2014a) The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells. J Mol Histol 45:707–714

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zuo D, Fan H et al (2014b) Over-expression of CXCR4 on mesenchymal stem cells protect against experimental colitis via immunomodulatory functions in impaired tissue. J Mol Histol 45:181–193

    Article  PubMed  Google Scholar 

  • Lu CP, Polak L, Rocha AS et al (2012) Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150:136–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maria OM, Maria O, Liu Y, Komarova SV, Tran SD (2011) Matrigel improves functional properties of human submandibular salivary gland cell line. Int J Biochem Cell Biol 43:622–631

    Article  CAS  PubMed  Google Scholar 

  • Mohd Hilmi AB, Halim AS (2015) Vital roles of stem cells and biomaterials in skin tissue engineering. World J Stem Cells 7:428–436

    Article  PubMed Central  PubMed  Google Scholar 

  • Nejsum LN, Praetorius J, Nielsen S (2005) NKCC1 and NHE1 are abundantly expressed in the basolateral plasma membrane of secretory coil cells in rat, mouse, and human sweat glands. Am J Physiol Cell Physiol 289:C333–C340

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Kleer CG (2014) Three dimensional cultures: a tool to study normal acinar architecture vs. malignant transformation of breast cells. J Vis Exp. doi:10.3791/51311

    PubMed Central  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM, Quinton PM (2003) Functional interaction of CFTR and ENaC in sweat glands. Pflugers Arch 445:499–503

    CAS  PubMed  Google Scholar 

  • Sheng Z, Fu X, Cai S et al (2009) Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc 17:427–435

    Google Scholar 

  • Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

  • St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: parallels and diversity. Cell 141:757–774

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang T, Zhang P et al (2014) Overexpression of the PLAP-1 gene inhibits the differentiation of BMSCs into osteoblast-like cells. J Mol Histol 45:599–608

    Article  CAS  PubMed  Google Scholar 

  • Takashi H, Katsumi M, Toshihiro A (2007) Hepatocytes maintain their function on basement membrane formed by epithelial cells. Biochem Biophys Res Commun 359:151–156

    Article  CAS  PubMed  Google Scholar 

  • Tang-Schomer MD, White JD, Tien LW et al (2014) Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci USA 111:13811–13816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Liu ZY, Zhao Q, Sun TZ, Ma K, Fu XB (2013) Future application of hair follicle stem cells: capable in differentiation into sweat gland cells. Chin Med J 126:3545–3552

    CAS  PubMed  Google Scholar 

  • Wang Y, Yin Y, Jiang F, Chen N (2015) Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J Mol Histol 46:13–20

    Article  CAS  PubMed  Google Scholar 

  • Zhang CP, Fu XB (2008) Therapeutic potential of stem cells in skin repair and regeneration. Chin J Traumatol 11:209–221

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Gupte MJ, Ma PX (2013) Biomaterials and stem cells for tissue engineering. Expert Opin Biol Ther 13:527–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M, Zeng S, Zhang L et al (2014) Localization of Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotransporter 1 and aquaporin-5 in human eccrine sweat glands. Acta Histochem 116:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen Y, Fu X (2015) Sweat gland regeneration after burn injury: is stem cell therapy a new hope? Cytotherapy 17:526–535

    Article  PubMed  Google Scholar 

  • Zonana J, Elder ME, Schneider LC et al (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67:1555–1562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The manuscript was supported in part by the National Natural Science Foundation of China (81071551, 81471882) and the Natural Science Foundation of Guangdong Province (2014A030313476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihong Li.

Ethics declarations

Conflict of interest

We declare we have no competing financial, personal or other relationships with other people or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, X., Zhang, M. et al. Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs. J Mol Hist 46, 431–438 (2015). https://doi.org/10.1007/s10735-015-9632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-015-9632-5

Keywords

Navigation