Skip to main content

Advertisement

Log in

Histomorphological evaluation of maternal and neonatal distal airspaces after maternal intake of nanoparticulate titanium dioxide: an experimental study in Wistar rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

This study was performed to determine the histomorphological alterations occurring in maternal and neonatal pulmonary distal airspaces of Wistar rats after maternal administration of titanium dioxide nanoparticles (TiO2 NPs). Thirty adult pregnant rats (150–250 g) and their offspring were used in this study. Pregnant rats were randomly divided into control (n = 15) and TiO2 NP-treated (n = 15) groups. A suspension of TiO2 NPs in phosphate-buffered saline was given orally to the treated group (0.1 ml/10 g body weight once daily) from days 6 to 12 of gestation. At term, maternal and neonatal lungs were collected and processed for energy-dispersive X-ray (EDX) and histological analysis. The mean linear intercept (MLI) and airspace wall thickness were measured by a stereological procedure with image analysis to assess alveolarization. EDX analysis demonstrated the presence of TiO2 in maternal and neonatal lungs. The lungs of TiO2 NP-treated mothers revealed evidence of pneumocytic apoptosis, abnormal lamellar inclusions, and macrophage and inflammatory cell infiltrates. Significant thinning of alveolar septa was detected in the treated rats (p < 0.001), but the MLI was constant in both groups (p = 0.207). Neonatal lungs from treated mothers revealed deficient septation, thickened mesenchyme between the saccules, pneumocytic apoptosis, atypical lamellar inclusions, and macrophage infiltration. The thickness of the primary septa was significantly increased (p = 0.001) with no significant change in MLI (p = 0.579) compared with the control group. In conclusion, TiO2 NPs were detected in maternal and neonatal lungs after oral intake by pregnant rats. The pulmonary response manifested as inflammatory lesions and delayed saccular development in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamson YVR (1991) Development of lung structure. In: Cristal RG, West JB et al (eds) The lung. Scientific Foundations Raven, New York, pp 663–670

    Google Scholar 

  • Afaq F, Abidi P, Matin R, Rahman Q (1998) Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol 18:307–312

    Article  CAS  PubMed  Google Scholar 

  • Agarwal BK (1991) X-ray spectroscopy, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Ambalavanan N, Stanishevsky A, Bulger A, Halloran B, Steele C, Vohra Y, Matalon S (2013) Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol 304:152–161

    Article  Google Scholar 

  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, David B, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357

    Article  CAS  PubMed  Google Scholar 

  • Borm PJ, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531

    Article  CAS  PubMed  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    Article  CAS  Google Scholar 

  • Burri PH (1991) Postnatal development and growth. In: Crystal RG, West JB, Weibel ER et al (eds) The lung. Scientific Foundations, Philadelphia, pp 1013–1026

    Google Scholar 

  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20:2393–2395

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, Zou Y, Xu S, Xu K, Ji A, Sheng L (2010) Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6:670–678

    Article  CAS  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 27(291):10–17

    Article  Google Scholar 

  • Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida K, Nakazato T, Yamamoto K, Fukui H, Horie M, Yoshida Y, Iwahashi H, Nakanishi J (2009) Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258:47–55

    Article  CAS  PubMed  Google Scholar 

  • Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy, 1st edn. Portland Press, London

    Google Scholar 

  • Grassian VH, O’shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Löschner K, Larsen EH, Birkedal RK, Vibenholt A, Boisen AM, Wallin H, Vogel U (2010) Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol 7:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Hussain S, Vanoirbeek JA, Luyts K, De Vooght V, Verbeken E, Thomassen LC, Martens JA, Dinsdale D, Boland S, Marano F, Nemery B, Hoet PH (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37:299–309

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Takano H, Ohnuki M, Yanagisawa R, Sakurai M, Shimada A, Mizushima K, Yoshikawa T (2008) Size effects of nanomaterials on lung inflammation and coagulatory disturbance. Int J Immunopathol Pharmacol 21:197–206

    CAS  PubMed  Google Scholar 

  • Jani PU, McCarthy DE, Florence AT (1994) Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 105:157–168

    Article  CAS  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knudsen L, Weibel ER, Gundersen HJ, Weinstein FV, Ochs M (2010) Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach. J Appl Physiol 108:412–421

    Article  PubMed  Google Scholar 

  • Koren G, Pastuszak A, Ito S (1998) Drugs in pregnancy. N Engl J Med 338:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Li N, Nel AE (2011) Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research. J Occupat Environ Med 53:74–79

    Article  Google Scholar 

  • Li B, Ze Y, Sun Q, Zhang T, Sang X, Cui Y, Wang X, Gui S, Tan D, Zhu M, Zhao X, Sheng L, Wang L, Hong F, Tang M (2013) Molecular mechanisms of nanosized titanium dioxide-induced pulmonary injury in mice. PLoS ONE 8:55563

    Article  Google Scholar 

  • Liang G, Pu Y, Yin L, Liu R, Ye B, Su Y, Li Y (2009) Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health 72:740–745

    Article  CAS  Google Scholar 

  • Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129(1–3):170–180

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed Central  PubMed  Google Scholar 

  • Saunders M (2009) Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):671–684

    Article  CAS  PubMed  Google Scholar 

  • Scott VD, Love G (1994) Quantitative electron probe microanalysis, 2nd edn. Ellis Horwood, Chichester

    Google Scholar 

  • Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:article 20

    Google Scholar 

  • Sugibayashi K, Todo H, Kimura E (2008) Safety evaluation of titanium dioxide nanoparticles by their absorption and elimination profiles. J Toxicol Sci 33(3):293–298

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Meng T, Loong TH, Hwa TJ (2004) Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Water Sci Technol 49:103–110

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Shinkai Y, Mizuo K, Oshio S, Takeda K (2010) Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cortex and neostriatum of mice. J Toxicol Sci 35(5):749–756

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55(1):95–102

    Article  CAS  Google Scholar 

  • Tian F, Razansky D, Estrada GG, Semmler-Behnke M, Beyerle A, Kreyling W, Ntziachristos V, Stoeger T (2009) Surface modification and size dependence in particle translocation during early embryonic development. Inhal Toxicol 21(1):92–96

    Article  CAS  PubMed  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789

    Article  CAS  PubMed  Google Scholar 

  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L (2009) Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2, and quartz. Toxicol Lett 186:152–159

    Article  PubMed  Google Scholar 

  • Vlahovic G, Russell ML, Mercer RR, Crapo JD (1999) Cellular and connective tissue changes in alveolar septal walls in emphysema. Am J Respir Crit Care Med 160:2086–2092

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  PubMed  Google Scholar 

  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230(1):90–104

    Article  CAS  PubMed  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wigle DT, Arbuckle TE, Turner MC, Bérubé A, Yang Q, Liu S, Krewski D (2008) Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev 11:373–517

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA, Macphail RC (2011) Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 6:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Kusaka Y, Donaldson K (2000) Comparative injurious and proinflammatory effects of three ultrafine metals in macrophages from young and old rats. Inhal Toxicol 12:267–273

    Article  CAS  Google Scholar 

  • Zhang R, Niu Y, Li Y, Zhao C, Song B, Li Y, Zhou Y (2010) Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice. Environ Toxicol Pharmacol 30(1):52–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Deanship of Taibah University, Kingdom of Saudi Arabia for continuous help and support. We also thank the research assistances for their help in recording and filing the research data.

Conflict of interest

The authors declare that there is no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaima M. Almasry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbastawisy, Y.M., Almasry, S.M. Histomorphological evaluation of maternal and neonatal distal airspaces after maternal intake of nanoparticulate titanium dioxide: an experimental study in Wistar rats. J Mol Hist 45, 91–102 (2014). https://doi.org/10.1007/s10735-013-9531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-013-9531-6

Keywords

Navigation