Skip to main content

Advertisement

Log in

The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study)

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Monosodium glutamate (MSG) is a natural constituent of many foods and was reported to have neurotoxic effects. The aim of this study was to investigate the possible toxic effect of MSG on histological and glial fibrillary acidic protein (GFAP) immunohistochemical features of cerebellar cortex of albino rats and to evaluate the possible protective role of vitamin C against this effect. Thirty rats were divided into 3 equal groups. Group I, control; Group II, treated with 3 g/kg/day of MSG and Group III, received 100 mg/kg/day of vitamin C simultaneously with MSG. After 14 days, cerebellar tissues were obtained and processed to prepare sections stained with H&E, toluidine blue. The GFAP was detected immunohistochemically. Histological examination of group II showed degenerative changes as pyknotic Purkinje and granule cells with areas of degeneration surrounded by inflammatory cells in granular layer. However, group III showed more preserved histological structure of cerebellar cortex. Statistical analysis of area percent of the GFAP immunoreaction among studied groups showed significant increase in group III when compared with group I and group II. However, a non significant increase was detected in group II when compared with group I. In conclusion, MSG has neurotoxic effect leading to degenerative changes in neurons and astrocytes in cerebellar cortex of albino rats and vitamin C supplementation could protect from these changes. Getting more attention to the constituents of food products is recommended and vitamin C could be advised to protect people from food oxidants additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Audebert M, Charbonnier JB, Boiteux S, Radicella JP (2002) Mitochondrial targeting of human 8-oxoguanine DNA glycosylase hOGG1 is impaired by a somatic mutation found in kidney cancer. DNA Repair (Amst) 17:497–505

    Article  Google Scholar 

  • Babai N, Atlasz T, Tamás A, Regl D, Tóth G, Kiss P, Gábriel R (2006) Search for the optimal monosodium glutamate treatment schedule to study the neuroprotective effects of PACAP in the retina. Annals 1070:149–155 (Abstract)

    CAS  Google Scholar 

  • Bancroft JD, Gamble M (2002) Theory and practice of histological techniques. Churchill Livingstone, London

    Google Scholar 

  • Baydas G, Ozer M, Yasar A, Koz ST, Tuzcu M (2006) Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats. Biochemistry (Mosc) 71:91–95

    Article  Google Scholar 

  • Bocci G, Fasciani A, Danesi R, Viacava P, Genazzani AR, Del Tacca M (2001) In vitro evidence of autocrine secretion of vascular endothelial growth factor by endothelial cells from human placental blood vessels. Mol Hum Reprod 7:771–777

    Article  PubMed  CAS  Google Scholar 

  • Bojanic VV, Bojanic Z, Najman S, Ivanov-èurlis J, Tomin J, Dinoic B, Savic T (2004) Diltiazem prevention of monosodium glutamate toxicity on hypothalamus in Wistar rats. Arch Oncol 12:19–20

    Article  Google Scholar 

  • Calabresi P, Centonze D, Paolo G, Marfia GA, Bernardi G (1999) Glutamate-triggered events inducing corticostriatal long-term depression. J Neurosci 19:6102–6110

    PubMed  CAS  Google Scholar 

  • Chen CJ, Liao SL, Kuo JS (2000) Gliotoxic action of glutamate on cultured astrocytes. J Neurochem 75:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Daniels M, Brown DR (2001) Astrocytes regulate N-methyl-D-aspartate receptor subunit composition increasing neuronal sensitivity to excitotoxicity. J Biol Chem 276:22446–22452

    Article  PubMed  CAS  Google Scholar 

  • Dawson EB, Evans DR, Harris WA, Teter MC, McGanity WJ (1999) The effect of ascorbic acid supplementation on the blood lead levels of smokers. J Am Coll Nutr 18:166–170

    PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    Article  PubMed  CAS  Google Scholar 

  • Eweka AO, Om’Iniabohs FAE (2007) Histological studies of the effects of monosodium glutamate on the cerebellum of adult wistar rats. Internet J Neurol 8 (http://www.ispub.com)

  • Eweka AO, Om’Iniabohs FAE (2008) Histological studies of the effects of monosodium glutamate on the inferior colliculus of adult wistar rats. Rev Electron Biomed Electron J Biomed 3:24–30

    Google Scholar 

  • Farombi EO, Onyema OO (2006) Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol 25:251–259

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Ciotti MT, Coletti A, Aloisi F, Levi G (1982) Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc Natl Acad Sci USA 79:7919–7923

    Article  CAS  Google Scholar 

  • Ganong WF (2005) Circulation through special organs. In: Review of medical physiology, chap 32. McGraw-Hill, New York, pp 611–630

  • Geha RS, Beiser A, Ren C, Patterson R, Paul A, Greenberger PA, Leslie C, Grammer LC, Ditto AM, Harris KE, Shaughnessy MA, Yarnold PR, Corren J, Saxon A (2000) Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. J Nutr 130:1058S–1062S

    PubMed  CAS  Google Scholar 

  • Giffard RG, Swanson RA (2005) Ischemia-induced programmed cell death in astrocytes. Glia 50:299–306

    Article  PubMed  Google Scholar 

  • Gill SS (2000) Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol Pathol 28:277–284

    Article  PubMed  CAS  Google Scholar 

  • Giordano G, Kavanagh TJ, Costa LG (2009) Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the polybrominated diphenyl ether (PBDE) mixture DE-71. NeuroToxicology 30:326–329

    Article  PubMed  CAS  Google Scholar 

  • Glauret AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. Portlant, London

    Google Scholar 

  • Goldsmith PC (2000) Neuroglial responses to elevated glutamate in the medial basal hypothalamus of the infant mouse. J Nutr 130:1032S–1038S

    PubMed  CAS  Google Scholar 

  • Gonzalez M (1990) Ascorbic acid and selenium interaction: its relevance in carcinogenesis. J Orthomol Med 5:67–69

    Google Scholar 

  • Hanbury R, Ling ZD, Wuu J, Jeffrey K (2003) GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. J Comp Neurol 461:307–316

    Article  CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  • Higashino H, Niwa A, Satou T, Ohta Y, Hashimoto S, Tabuchi M, Ooshima K (2009) Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid-(ONO-2506) treated stroke-prone spontaneously hypertensive rats. J Neural Trans 116:1209–1219

    Article  CAS  Google Scholar 

  • Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124:114–123

    Article  PubMed  CAS  Google Scholar 

  • Jiang SX, Lertvorachon J, Hou ST, Konishi Y, Webster J, Mealing G, Brunette E, Tauskela J, Preston E (2005) Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia. J Biol Chem 280:33811–33818

    Article  PubMed  CAS  Google Scholar 

  • Kiernan JA (1999) Histological and histochemical methods: theory and practice. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Li ZY, Tso MO, Wong H, Organisciak DT (1985) Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study. Investig Ophthalmol Vis Sci 26:1589–1598

    CAS  Google Scholar 

  • Loo BV, Bachschmid M, Spitzer V, Brey L, Ullrich V, Luscher TF (2003) Decreased plasma and tissue levels of vitamin C in a rat model of aging: implications for antioxidative defense. Biochem Biophys Res Commun 303:483–487

    Article  PubMed  Google Scholar 

  • Magistretti PJ, Ransom BR (2002) Astrocytes. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. American College of Neuropsychopharmacology, pp 132–45

  • Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Li L, Hayslett K, Qu Z (2006) Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity. Neurochem Res 31:785–794

    Article  PubMed  CAS  Google Scholar 

  • Moonen G, Rogister B, Leprince P, Rigo JM, Delree P, Lefebvre PP, Schoenen J (1990) Neurono-glial interactions and neural plasticity. Progr Brain Res 86: 63–73 (Quoted by Baydas et al. (2006))

    Google Scholar 

  • Nakanishi Y, Fujimoto KM, Salunga TL, Nomoto K, Nakano M, Selmi C, Gershwin M (2008) Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun 30:242–250

    Article  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Christopher CC, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35

    PubMed  CAS  Google Scholar 

  • Pavlovic V, Sarac M (2010) The role of ascorbic acid and monosodium glutamate in thymocyte apoptosis. Bratisl Lek listy 111:357–360

    PubMed  CAS  Google Scholar 

  • Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Eliasson C, Siushansian R, Ding M, Dixon SJ et al (1999) The impact of genetic removal of gfap and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes. Neurochem Res 24:1357–1362

    Article  PubMed  CAS  Google Scholar 

  • Rascher K (1981) Monosodium glutamate-induced lesions in the rat cingulate cortex. Cell Tissue Res 220:239–250

    Article  PubMed  CAS  Google Scholar 

  • Re DB, Boucraut J, Samuel D, Birman S, Goff KL, Had-Aissouni L (2003) Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents. J Neurochem 85:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Reistad T, Mariussen E, Ring A, Fonnum F (2007) In vitro toxicity of tetrabromobisphenol-a on cerebellar granule cells: cell death, free radical formation, calcium influx and extracellular glutamate. Toxicol Sci 96:268–278

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–533

    PubMed  CAS  Google Scholar 

  • Schubert D, Piasecki D (2001) Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci 21:7455–7462

    PubMed  CAS  Google Scholar 

  • Sharma P (1996) Effect of ascorbic acid on hyperoxic rat astrocytes. Neurosci 72:391–397

    Article  CAS  Google Scholar 

  • Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    Article  PubMed  CAS  Google Scholar 

  • Spence RD, Zhen Y, White S, Schlinger BA, Lainy B (2009) Recovery of motor and cognitive function after cerebellar lesions in a songbird—role of estrogens. Eur J Neurosci 29:1225–1234

    Article  Google Scholar 

  • Sriram K, Benkovic SA, Hebert MA, Miller DB, O’Callaghan JP (2004) Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1, 2, 3, 6 tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? J Biol Chem; 279:19936–19947

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom CE (2004) The role of glutamate transporters in developmental epilepsy: a concept in flux. Epilepsy Curr 4:243–244

    Article  PubMed  Google Scholar 

  • Standring S, Ellis H, Healy JC, Johnson D, Williams A (2005) Gray’s anatomy. Elsevier Churchill Livingstone, New York

    Google Scholar 

  • Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B (2007) Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 8:2–12

    Article  PubMed  Google Scholar 

  • Suárez I, Bodega G, Rubio M, Fernández B (1992) Sexual dimorphism in the hamster cerebellum demonstrated by glial fibrillary acidic protein (GFAP) and vimentin immunoreactivity. Glia 5:10–16

    Article  PubMed  Google Scholar 

  • Szydlowska K, Zawadzka M, Kaminska B (2006) Neuroprotectant FK506 inhibits glutamate-induced apoptosis of astrocytes in vitro and in vivo. J Neurochem 99:965–975

    Article  PubMed  CAS  Google Scholar 

  • Takuma K, Matsuda T, Hashimoto H, Kitanaka J, Asano S, Kishida Y, Baba A (1996) Role of Na1-Ca21 exchanger in agonist-induced Ca21 signaling in cultured rat astrocytes. J Neurochem 67:1840–1845

    Article  PubMed  CAS  Google Scholar 

  • Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T (2002) Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure. Hypertension 40:834–839

    Article  PubMed  CAS  Google Scholar 

  • Tsao CS, Leung PY, Young M (1987) Effect of dietary ascorbic acid intake on tissue vitamin C in mice. J Nutr 117:291–297

    PubMed  CAS  Google Scholar 

  • Vinodini N, Nayanatara AK, Gowda KM, Ahamed B, Ramaswamy C, Bhat RM (2008) Effect of monosodium glutamate-induced oxidative damage on rat testis. J Chin Clin Med 3:370–373

    CAS  Google Scholar 

  • Walker R, Lupien JR (2000) The safety evaluation of monosodium glutamate. J Nutr 130:1049S–1052S

    PubMed  CAS  Google Scholar 

  • Ye ZC, Sontheimer H (1998) Astrocytes protect neurons from neurotoxic injury by serum glutamate. Glia 22:237–248

    Article  PubMed  CAS  Google Scholar 

  • Zai H, Kusano M, Hosaka H, Shimoyama Y, Nagoshi A, Maeda M, Mori KO (2009) Monosodium L-glutamate added to a high-energy, high-protein liquid diet promotes gastric emptying. Am J Clin Nutr 89:431–435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to extend our thanks and appreciation to The Deanship of Scientific Reasearch, Taibah University, KSA for supporting this project by grant No. 431/693. Special thanks also to Prof. Khaled Hamed Almesalamy for his direction, assistance, and guidance without his knowledge and assistance this study would not have been successful. Also, we would like to appreciate efforts of Prof. Amira Ibrahim Alboraei for revision of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala E. Hashem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashem, H.E., El-Din Safwat, M.D. & Algaidi, S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Hist 43, 179–186 (2012). https://doi.org/10.1007/s10735-011-9380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-011-9380-0

Keywords

Navigation