Skip to main content
Log in

Expression of βA3/A1-crystallin in the developing and adult rat eye

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Crystallins are very abundant structural proteins of the lens and are also expressed in other tissues. We have previously reported a spontaneous mutation in the rat βA3/A1-crystallin gene, termed Nuc1, which has a novel, complex, ocular phenotype. The current study was undertaken to compare the expression pattern of this gene during eye development in wild type and Nuc1 rats by in situ hybridization (ISH) and immunohistochemistry (IHC). βA3/A1-crystallin expression was first detected in the eyes of both wild type and Nuc1 rats at embryonic (E) day 12.5 in the posterior portion of the lens vesicle, and remained limited to the lens fibers throughout fetal life. After birth, βA3/A1-crystallin expression was also detected in the neural retina (specifically in the astrocytes and ganglion cells) and in the retinal pigmented epithelium (RPE). This suggested that βA3/A1-crystallin is not only a structural protein of the lens, but has cellular function(s) in other ocular tissues. In summary, expression of βA3/A1-crystallin is controlled differentially in various eye tissues with lens being the site of greatest expression. Similar staining patterns, detected by ISH and IHC, in wild type and Nuc1 animals suggest that functional differences in the protein, rather than changes in mRNA/protein level of expression, likely account for developmental abnormalities in Nuc1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts HJ, Lubsen NH, Schoenmakers JG (1989) Crystallin gene expression during rat lens development. Eur J Biochem 183(1):31–36

    Article  PubMed  CAS  Google Scholar 

  • Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26(1):78–98

    Article  PubMed  CAS  Google Scholar 

  • Aravind P, Mishra A, Suman SK, Jobby MK, Sankaranarayanan R, Sharma Y (2009) The betagamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry 48(51):12180–12190

    Article  PubMed  CAS  Google Scholar 

  • Badea TC, Nathans J (2010) Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res doi:10.1016/j.visres.2010.08.039

  • Burne JF, Raff MC (1997) Retinal ganglion cell axons drive the proliferation of astrocytes in the developing rodent optic nerve. Neuron 18(2):223–230

    Article  PubMed  CAS  Google Scholar 

  • Clayton RM, Jeanny JC, Bower DJ, Errington LH (1986) The presence of extralenticular crystallins and its relationship with transdifferentiation to lens. Curr Top Dev Biol 20:137–151

    Article  PubMed  CAS  Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302(5907):415–417

    Article  PubMed  CAS  Google Scholar 

  • Duprey KM, Robinson KM, Wang Y, Taube JR, Duncan MK (2007) Subfertility in mice harboring a mutation in betaB 2-crystallin. Mol Vis 13:366–373

    PubMed  CAS  Google Scholar 

  • Gehlbach P, Hose S, Lei B, Zhang C, Cano M, Arora M, Neal R, Barnstable C, Goldberg MF, Zigler JS Jr, Sinha D (2006) Developmental abnormalities in the Nuc1 rat retina: a spontaneous mutation that affects neuronal and vascular remodeling and retinal function. Neuroscience 137(2):447–461

    Article  PubMed  CAS  Google Scholar 

  • Graw J, Jung M, Loster J, Klopp N, Soewarto D, Fella C, Fuchs H, Reis A, Wolf E, Balling R, Hrabe de Angelis M (1999) Mutation in the betaA3/A1-crystallin encoding gene Cryba1 causes a dominant cataract in the mouse. Genomics 62(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol 36(5):435–499

    Article  PubMed  CAS  Google Scholar 

  • Liedtke T, Schwamborn JC, Schroer U, Thanos S (2007) Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteom 6(5):895–907

    Article  CAS  Google Scholar 

  • Ling TL, Mitrofanis J, Stone J (1989) Origin of retinal astrocytes in the rat: evidence of migration from the optic nerve. J Comp Neurol 286(3):345–352

    Article  PubMed  CAS  Google Scholar 

  • Liu SB, He YY, Zhang Y, Lee WH, Qian JQ, Lai R, Jin Y (2008) A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One 3(3):e1770

    Article  PubMed  Google Scholar 

  • Lubsen NH, Aarts HJ, Schoenmakers JG (1988) The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family. Prog Biophys Mol Biol 51(1):47–76

    Article  PubMed  CAS  Google Scholar 

  • Miller RH, David S, Patel R, Abney ER, Raff MC (1985) A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocyte lineages. Dev Biol 111(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Moshiri A, Gonzalez E, Tagawa K, Maeda H, Wang M, Frishman LJ, Wang SW (2008) Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol 316(2):214–227. doi:10.1016/j.ydbio.2008.01.015

    Article  PubMed  CAS  Google Scholar 

  • Peterson CA, Piatigorsky J (1986) Preferential conservation of the globular domains of the beta A3/A1-crystallin polypeptide of the chicken eye lens. Gene 45(2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Piatigorsky J (1989) Lens crystallins and their genes: diversity and tissue-specific expression. Faseb J 3(8):1933–1940

    PubMed  CAS  Google Scholar 

  • Piri N, Song M, Kwong JM, Caprioli J (2007) Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Res 1141:1–9

    Article  PubMed  CAS  Google Scholar 

  • Robinson ML, Overbeek PA (1996) Differential expression of alpha A- and alpha B-crystallin during murine ocular development. Invest Ophthalmol Vis Sci 37(11):2276–2284

    PubMed  CAS  Google Scholar 

  • Sinha D, Hose S, Zhang C, Neal R, Ghosh M, O’Brien TP, Sundin O, Goldberg MF, Robison WG Jr, Russell P, Lo WK, Samuel Zigler J Jr (2005) A spontaneous mutation affects programmed cell death during development of the rat eye. Exp Eye Res 80(3):323–335

    Article  PubMed  CAS  Google Scholar 

  • Sinha D, Klise A, Sergeev Y, Hose S, Bhutto IA, Hackler L Jr, Malpic-Llanos T, Samtani S, Grebe R, Goldberg MF, Hejtmancik JF, Nath A, Zack DJ, Fariss RN, McLeod DS, Sundin O, Broman KW, Lutty GA, Zigler JS Jr (2008) betaA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development. Mol Cell Neurosci 37(1):85–95

    Article  PubMed  CAS  Google Scholar 

  • Srivastava OP, Srivastava K, Chaves JM (2008) Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses. Mol Vis 14:1872–1885

    PubMed  CAS  Google Scholar 

  • Van Leen RW, Breuer ML, Lubsen NH, Schoenmakers JG (1987) Developmental expression of crystallin genes: in situ hybridization reveals a differential localization of specific mRNAs. Dev Biol 123(2):338–345

    Article  PubMed  Google Scholar 

  • Wang X, Garcia CM, Shui YB, Beebe DC (2004) Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Invest Ophthalmol Vis Sci 45(10):3608–3619

    Article  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Barres BA (1997) Retinal development: communication helps you see the light. Curr Biol 7(7):R433–R436

    Article  PubMed  CAS  Google Scholar 

  • Xi J, Farjo R, Yoshida S, Kern TS, Swaroop A, Andley UP (2003) A comprehensive analysis of the expression of crystallins in mouse retina. Mol Vis 9:410–419

    PubMed  CAS  Google Scholar 

  • Yancey SB, Koh K, Chung J, Revel JP (1988) Expression of the gene for main intrinsic polypeptide (MIP): separate spatial distributions of MIP and beta-crystallin gene transcripts in rat lens development. J Cell Biol 106(3):705–714

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Quigley HA, Pease ME, Yang Y, Qian J, Valenta D, Zack DJ (2007) Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Invest Ophthalmol Vis Sci 48(12):5539–5548

    Article  PubMed  Google Scholar 

  • Zhang C, Gehlbach P, Gongora C, Cano M, Fariss R, Hose S, Nath A, Green WR, Goldberg MF, Zigler JS Jr, Sinha D (2005) A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Dev Dyn 234(1):36–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health Grants EY018636 (DS), EY019037 (DS), EY019037-S (DS), EY012221 (MKD) and Research to Prevent Blindness (an unrestricted grant to The Wilmer Eye Institute). We thank Spring Valley Laboratories, Woodbine, MD, for raising the βA3/A1-crystallin antibody; Drs. Tomohiro Masuda and Zhiyong Yang for help with in situ protocols and Ms. Stacey Hose for technical support. We thank Dr. Morton F. Goldberg of the Wilmer Eye Institute, Baltimore, Maryland and Dr. Bhaja K. Padhi from Health Canada, Tunney’s Pasture, Ottawa, Canada for critical reading and discussion of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, G., Ma, B., Zhang, C. et al. Expression of βA3/A1-crystallin in the developing and adult rat eye. J Mol Hist 42, 59–69 (2011). https://doi.org/10.1007/s10735-010-9307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9307-1

Keywords

Navigation