Skip to main content
Log in

Analysis of the intracellular localization of p73 N-terminal protein isoforms TAp73 and ∆Np73 in medulloblastoma cell lines

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The protein homologous to the tumor suppressor p53, p73, has essential roles in development and tumorigenesis. This protein exists in a wide range of isoforms with different, even antagonistic, functions. However, there are virtually no detailed morphological studies analyzing the endogenous expression of p73 isoforms at the cellular level in cancer cells. In this study, we investigated the expression and subcellular distribution of two N-terminal isoforms, TAp73 and ΔNp73, in medulloblastoma cells using immunofluorescence microscopy. Both proteins were observed in all cell lines examined, but differences were noted in their intracellular localization between the reference Daoy cell line and four newly established medulloblastoma cell lines (MBL-03, MBL-06, MBL-07 and MBL-10). In the new cell lines, TAp73 and ΔNp73 were located predominantly in cell nuclei. However, there was heterogeneity in TAp73 distribution in the cells of all MBL cell lines, with the protein located in the nucleus and also in a limited non-random area in the cytoplasm. In a small percentage of cells, we detected cytoplasmic localization of TAp73 only, i.e., nuclear exclusion was observed. Our results provide a basis for future studies on the causes and function of distinct intracellular localization of p73 protein isoforms with respect to different protein–protein interactions in medulloblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aqeilan RI, Pekarsky Y, Herrero JJ, Palamarchuk A, Letofsky J, Druck T, Trapasso F, Han SY, Melino G, Huebner K, Croce CM (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 101:4401–4406. doi:10.1073/pnas.0400805101

    Article  CAS  PubMed  Google Scholar 

  • Barrera FN, Poveda JA, González-Ros JM, Neira JL (2003) Binding of the C-terminal sterile α motif (SAM) domain of human p73 to lipid membranes. J Biol Chem 278:46878–46885. doi:10.1074/jbc.M307846200

    Article  CAS  PubMed  Google Scholar 

  • Beitzinger M, Hofmann L, Oswald C, Beinoraviciute-Kellner R, Sauer M, Griesmann H, Bretz AC, Burek C, Rosenwald A, Stiewe T (2008) p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. EMBO J 27:792–803. doi:10.1038/emboj.2008.13

    Article  CAS  PubMed  Google Scholar 

  • Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, Raff M (2004) Roles for p53 and p73 during oligodendrocyte development. Development 131:1211–1220. doi:10.1242/dev.01035

    Article  CAS  PubMed  Google Scholar 

  • Birkaya B, Ortt K, Sinha S (2007) Novel in vivo targets of DeltaNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach. BMC Mol Biol 8:43. doi:10.1186/1471-2199-8-43

    Article  PubMed  Google Scholar 

  • Boon K, Edwards JB, Siu IM, Olschner D, Eberhart CG, Marra MA, Strausberg RL, Riggins GJ (2003) Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 22:7687–7694. doi:10.1038/sj.onc.1207043

    Article  CAS  PubMed  Google Scholar 

  • Bozzetti C, Nizzoli R, Musolino A, Martella EM, Crafa P, Lagrasta CA, Camisa R, Bonati A, Lunghi P, Ardizzoni A (2007) p73 a p53 pathway in human breast cancer. J Clin Oncol 25:1451–1453. doi:10.1200/JCO.2006.09.2023

    Article  PubMed  Google Scholar 

  • Cabrera-Socorro A, Pueyo Morlans M, Suarez Sola ML, Gonzalez Delgado FJ, Castañeyra-Perdomo A, Marin MC, Meyer G (2006) Multiple isoforms of the tumor protein p73 are expressed in the adult human telencephalon and choroid plexus and present in the cerebrospinal fluid. Eur J Neurosci 23:2109–2118. doi:10.1111/j.1460-9568.2006.04750.x

    Article  PubMed  Google Scholar 

  • Castellino RC, De Bortoli M, Lin LL, Skapura DG, Rajan JA, Adesina AM, Perlaky L, Irwin MS, Kim JYH (2007) Overexpressed TP73 induces apoptosis in medulloblastoma. BMC Cancer 7:127. doi:10.1186/1471-2407-7-127

    Article  PubMed  Google Scholar 

  • Chen Y, Chen CF, Riley DJ, Allred DC, Chen PL, Von Hoff D, Osborne CK, Lee WH (1995) Aberrant subcellular localization of BRCA1 in breast cancer. Science 270:789–791. doi:10.1126/science.270.5237.789

    Article  CAS  PubMed  Google Scholar 

  • Chen YK, Huse SS, Lin LM (2003) Differential expression of p53, p63 and p73 proteins in human buccal squamous-cell carcinomas. Clin Otolaryngol 28:451–455. doi:10.1046/j.1365-2273.2003.00743.x

    Article  CAS  PubMed  Google Scholar 

  • De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M, Levrero M, Melino G (1998) Two new p73 splice variants, γ and δ, with different transcriptional activity. J Exp Med 188:1763–1768

    Article  PubMed  Google Scholar 

  • De Laurenzi V, Catani MV, Terrinoni A, Corazzari M, Melino G, Costanzo A, Levrero M, Knight RA (1999) Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants ε and ζ. Cell Death Differ 6:389–390

    Article  PubMed  Google Scholar 

  • Di Vinci A, Sessa F, Casciano I, Banelli B, Franzi F, Brigati C, Allemanni G, Russo P, Dominioni L, Romani M (2009) Different intracellular compartmentalization of TA and ∆Np73 in non-small cell lung cancer. Int J Oncol 34:449–456. doi:10.3892/ijo_00000169

    CAS  PubMed  Google Scholar 

  • Domínguez G, García JM, Peña C, Silva J, García V, Martínez L, Maximiano C, Gómez ME, Rivera JA, García-Andrade C, Bonilla F (2006a) ΔTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F–1. J Clin Oncol 24:805–815. doi:10.1200/JCO.2005.02.2350

    Article  PubMed  Google Scholar 

  • Domínguez G, Peña C, Silva J, García JM, García V, Rodríguez R, Cantos B, Citores MJ, España P, Bonilla F (2006b) The presence of an intronic deletion in p73 and high levels of ZEB I alter the TAp73/ΔTAp73 ratio in colorectal carcinomas. J Pathol 210:390–397. doi:10.1002/path.2066

    Article  PubMed  Google Scholar 

  • Douc-Rasy S, Barrois M, Echeynne M, Kaghad M, Blanc E, Raguenez G, Goldschneider D, Terrier-Lacombe MJ, Hartmann O, Moll U, Caput D, Bénard J (2002) ΔN-p73α accumulates in human neuroblastic tumors. Am J Pathol 160:631–639

    CAS  PubMed  Google Scholar 

  • Emmrich S, Wang W, John K, Li W, Pützer BM (2009) Antisense gapmers selectively suppress individual oncogenic p73 splice isoforms and inhibit tumor growth in vivo. Mol Cancer 8:61. doi:10.1186/1476-4598-8-61

    Article  PubMed  Google Scholar 

  • Fabbro M, Henderson BR (2003) Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp Cell Res 282:59–69. doi:10.1016/S0014-4827(02)00019-8

    Article  CAS  PubMed  Google Scholar 

  • Fillippovich I, Sorokina N, Gatei M, Haupt Y, Hobson K, Moallem E, Spring K, Mould M, McGuckin MA, Lavin MF, Khanna KK (2001) Transactivation-deficient p73α (p73Δexon2) inhibits apoptosis and competes with p53. Oncogene 20:514–522

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416:560–564. doi:10.1038/416560a

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7:363–373. doi:10.1016/j.ccr.2005.02.019

    Article  CAS  PubMed  Google Scholar 

  • Frasca F, Vella V, Aloisi A, Mandarino A, Mazzon E, Vigneri R, Vigneri P (2003) p73 tumor-suppressor activity is impaired in human thyroid cancer. Cancer Res 63:5829–5837

    CAS  PubMed  Google Scholar 

  • Goldschneider D, Million K, Meiller A, Haddada H, Puisieux A, Bénard J, May E, Douc-Rasy S (2005) The neurogene BTG2 TIS21/PC3 is transactivated by ΔNp73α via p53 specifically in neuroblastoma cells. J Cell Sci 118:1245–1253. doi:10.1242/jcs.01704

    Article  CAS  PubMed  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Lüthi AU, Pirnia F, Hügli B, Graber HU, De Laurenzi V, Fey MF, Melino G, Tobler A (2001) Human ΔNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8:1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Nie L, Kawai H, Yuan ZM (2001) Subcellular distribution of p53 and p73 are differentially regulated by MDM2. Cancer Res 61:6703–6707

    CAS  PubMed  Google Scholar 

  • Helton ES, Zhu J, Chen X (2006) The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem 281:2533–2542. doi:10.1074/jbc.M507964200

    Article  CAS  PubMed  Google Scholar 

  • Herms J, Neidt I, Lüscher B, Sommer A, Schürmann P, Schröder T, Bergmann M, Wilken B, Probst-Cousin S, Hernáiz-Driever P, Behnke J, Hanefeld F, Pietsch T, Kretzschmar HA (2000) C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89:395–402. doi:10.1002/1097-0215(20000920)89:5<395:AID-IJC1>3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  • Hong SM, Cho H, Moskaluk CA, Yu E, Zaika AI (2007) p63 and p73 expression in extrahepatic bile duct carcinoma and their clinical significance. J Mol Histol 38:167–175. doi:10.1007/s10735-007-9084-7

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Lehrach H, Janitz M (2009) Comparative analysis of an experimental subcellular protein localization assay and in silico prediction methods. J Mol Histol 40:343–352. doi:10.1007/s10735-009-9247-9

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Stuart J, Leno R, Maki CG (2002) Nuclear import and export signals in control of the p53-related protein p73. J Biol Chem 277:15053–15060. doi:10.1074/jbc.M200248200

    Article  CAS  PubMed  Google Scholar 

  • Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG (2003) Chemosensitivity linked to p73 function. Cancer Cell 3:403–410. doi:10.1016/S1535-6108(03)00078-3

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto O, Kawahara C, Enjo K, Obinata M, Nukiwa T, Ikawa S (2002) Possible oncogenic potential of ΔNp73: a newly identified isoform of human p73. Cancer Res 62:636–641

    CAS  PubMed  Google Scholar 

  • Jiang Y, Lo W, Akhmametyeva EM, Chang LS (2006) Over-expression of p73β results in apoptotic death of post-mitotic hNT neurons. J Neurol Sci 240:1–6. doi:10.1016/j.jns.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  • Johnsen JI, Kogner P, Albihn A, Henriksson MA (2009) Embryonal neural tumours and cell death. Apoptosis 14:424–438. doi: 10.1007/s10495-009-0325-y

    Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819. doi:10.1016/S0092-8674(00)80540-1

    Article  CAS  PubMed  Google Scholar 

  • Kartasheva NN, Contente A, Lenz-Stöppler C, Roth J, Dobbelstein M (2002) p53 induces the expression of its antagonist p73ΔN, establishing an autoregulatory feedback loop. Oncogene 21:4714–4727. doi:10.1038/sj.onc.1205584

    Article  Google Scholar 

  • Kim KC, Kim TS, Kang KH, Choi KH (2001) Amphiphysin IIb-1, a novel splicing variant of amphiphysin II, regulates p73β function through protein-protein interactions. Oncogene 20:6689–6699

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Park JS, Um SJ (2007) Filamin A negatively regulates the transcriptional activity of p73α in the cytoplasm. Biochem Biophys Res Commun 362:1101–1106. doi:10.1016/j.bbrc.2007.08.148

    Article  CAS  PubMed  Google Scholar 

  • Klanrit P, Flinterman MB, Odell EW, Melino G, Killick R, Norris JS, Tavassoli M (2008) Specific isoforms of p73 control the induction of cell death induced by the viral proteins, E1A or apoptin. Cell Cycle 7:205–215

    Article  CAS  PubMed  Google Scholar 

  • Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsić A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088. doi:10.1371/journal.pone.0003088

    Article  PubMed  Google Scholar 

  • Lau LM, Wolter JK, Lau JT, Cheng LS, Smith KM, Hansford LM, Zhang L, Baruchel S, Robinson F, Irwin MS (2009) Cyclooxygenase inhibitors differentially modulate p73 isoforms in neuroblastoma. Oncogene 28:2024–2033. doi:10.1038/onc.2009.59

    Article  CAS  PubMed  Google Scholar 

  • Liang SH, Clarke MF (2001) Regulation of p53 localization. Eur J Biochem 268:2779–2783. doi:10.1046/j.1432-1327.2001.02227.x

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Nozell S, Xiao H, Chen X (2004) ΔNp73β is active in transactivation and growth suppression. Mol Cell Biol 24:487–501. doi:10.1128/MCB.24.2.487-501.2004

    Article  CAS  PubMed  Google Scholar 

  • Loja T (2008) Relationship between histopathological and molecular genetic markers in solid tumors in vitro. Dissertation, Masaryk University

  • Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 89:7262–7266

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, LaQuaglia M, Bénard J, Riou G (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92:4407–4411

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H, Oren M, Koch A, Tannapfel A, Stremmel W, Melino G, Krammer PH (2005) TAp73/∆Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12:1564–1577. doi:10.1038/sj.cdd.4401774

    Article  PubMed  Google Scholar 

  • Narahashi T, Niki T, Wang T, Goto A, Matsubara D, Funata N, Fukayama M (2006) Cytoplasmic localization of p63 is associated with poor patient survival in lung adenocarcinoma. Histopathology 49:349–357. doi:10.1111/j.1365-2559.2006.02507.x

    Article  CAS  PubMed  Google Scholar 

  • Paliwal P, Radha V, Swarup G (2007) Regulation of p73 by Hck through kinase-dependent and independent mechanisms. BMC Mol Biol 8:45. doi:10.1186/1471-2199-8-45

    Article  PubMed  Google Scholar 

  • Petrenko O, Zaika A, Moll UM (2003) ΔNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 23:5540–5555. doi:10.1128/MCB.23.16.5540-5555.2003

    Article  CAS  PubMed  Google Scholar 

  • Pizer BL, Clifford SC (2009) The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg 23:364–375. doi:10.1080/02688690903121807

    Article  PubMed  Google Scholar 

  • Rosenbluth JM, Johnson K, Tang L, Triplett T, Pietenpol JA (2009) Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle 8:3702–3706

    Article  CAS  PubMed  Google Scholar 

  • Sayan AE, Paradisi A, Vojtesek B, Knight RA, Melino G, Candi E (2005) New antibodies recognizing p73: comparison with commercial antibodies. Biochem Biophys Res Commun 330:186–193. doi:10.1016/j.bbrc.2005.02.145

    Article  CAS  PubMed  Google Scholar 

  • Sayan AE, Sayan BS, Gogvadze V, Dinsdale D, Nyman U, Hansen TM, Zhivotovsky B, Cohen GM, Knight RA, Melino G (2008) p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene 27:4363–4372. doi:10.1038/onc.2008.64

    Article  CAS  PubMed  Google Scholar 

  • Slade N, Zaika A, Erster S, Moll UM (2004) ΔNp73 stabilises TAp73 proteins but compromises their function due to inhibitory hetero-oligomer formation. Cell Death Differ 11:357–360. doi:10.1038/sj.cdd.4401335

    Article  CAS  PubMed  Google Scholar 

  • Stiewe T, Zimmermann S, Frilling A, Esche H, Pützer BM (2002a) Transactivation-deficient ΔTA-p73 acts as an oncogene. Cancer Res 62:3598–3602

    CAS  PubMed  Google Scholar 

  • Stiewe T, Theseling CC, Pützer BM (2002b) Transactivation-deficient ΔTA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem 277:14177–14185. doi:10.1074/jbc.M200480200

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ota K, Kameoka M, Itaya A, Yoshihara K (2006) Up-regulation of NFκB-responsive gene expression by ∆Np73α in p53 null cells. Exp Cell Res 312:1254–1264. doi:10.1016/j.yexcr.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  • Tannapfel A, Engeland K, Weinans L, Katalinic A, Hauss J, Mössner J, Wittekind C (1999a) Expression of p73, a novel protein related to the p53 tumour supressor p53, and apoptosis in cholangiocellular carcinoma of the liver. Br J Cancer 80:1069–1074. doi:10.1038/sj.bjc.6690465

    Article  CAS  PubMed  Google Scholar 

  • Tannapfel A, Wasner M, Krause K, Geissler F, Katalinic A, Hauss J, Mösner J, Engeland K, Wittekind C (1999b) Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. J Natl Cancer Inst 91:1154–1158. doi:10.1093/jnci/91.13.1154

    Article  CAS  PubMed  Google Scholar 

  • Tannapfel A, John K, Miše N, Schmidth A, Buhlmann S, Ibrahim SM, Pützer BM (2008) Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73. Carcinogenesis 29:211–218. doi:10.1093/carcin/bgm236

    Article  CAS  PubMed  Google Scholar 

  • Terrinoni A, Ranalli M, Cadot B, Leta A, Bagetta G, Vousden KH, Melino G (2004) p73-alpha is capable of inducing scotin and ER stress. Oncogene 23:3721–3725. doi:10.1038/sj.onc.1207342

    Article  CAS  PubMed  Google Scholar 

  • Toh WH, Logette E, Corcos L, Sabapathy K (2008) TAp73β and DNp73β activate the expression of the pro-survival caspase-2s. Nucleic Acids Res 36:4498–4509. doi:10.1093/nar/gkn414

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao M, Iovanna JL, Squire J, Jurisica I, Kaplan D, Melino G, Jurisicova A, Mak TW (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22:2677–2691. doi:10.1101/gad.1695308

    Article  CAS  PubMed  Google Scholar 

  • Tophkhane C, Yang S, Zhao ZJ, Yang X (2009) Cell density-dependent regulation of p73 in breast cancer cells. Int J Oncol 35:1429–1434. doi:10.3892/ijo_00000461

    CAS  PubMed  Google Scholar 

  • Ueda Y, Hijikata M, Takagi S, Chiba T, Shimotohno K (1999) New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene 18:4993–4998

    Article  CAS  PubMed  Google Scholar 

  • Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Morita M, Funa K, Yasumoto K (2004) Expression of ΔNp73 predicts poor prognosis in lung cancer. Clin Cancer Res 10:6905–6911. doi:10.1158/1078-0432.CCR-04-0290

    Article  CAS  PubMed  Google Scholar 

  • Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, Relichova J (2006) Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer 6:32. doi:10.1186/1471-2407-6-32

    Article  PubMed  Google Scholar 

  • Wakatsuki M, Ohno T, Iwakawa M, Ishikawa Noda S, Ohta T, Kato S, Tsujii H, Imai T, Nakano T (2008) p73 protein expression correlates with radiation-induced apoptosis in the lack of p53 response to radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys 70:1189–1194. doi:10.1016/j.ijrobp.2007.08.033

    CAS  PubMed  Google Scholar 

  • Wang J, Liu YX, Hande MP, Wong AC, Jin YJ, Yin Y (2007) TAp73 is a downstream target of p53 in controlling the cellular defense against stress. J Biol Chem 282:29152–29162. doi:10.1074/jbc.M703408200

    Article  CAS  PubMed  Google Scholar 

  • Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS (2006) MDM2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281:34096–34103. doi:10.1074/jbc.M603654200

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Henry S, Smith MA, Bowser R (2004) The p53 homologue p73 accumulates in the nucleus and localizes to neurites and neurofibrillary tangles in Alzheimer disease brain. Neuropathol Appl Neurobiol 30:19–29. doi:10.1046/j.0305-1846.2003.00496.x

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D (2009) Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int J Cancer 124:109–119. doi:10.1002/ijc.23929

    Article  CAS  PubMed  Google Scholar 

  • Zaika AI, Marchenko N, Moll UM (1999) Cytoplasmically “sequestered” wild type p53 protein is resistant to mdm2-mediated degradation. J Biol Chem 274:27474–27480. doi:10.1074/jbc.274.39.27474

    Article  CAS  PubMed  Google Scholar 

  • Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M, Chalas E, Moll UM (2002) ΔNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196:765–780. doi:10.1084/jem.20020179

    Article  CAS  PubMed  Google Scholar 

  • Zitterbart K, Zavrelova I, Kadlecova J, Spesna R, Kratochvilova A, Pavelka Z, Sterba J (2007) p73 expression in medulloblastoma: TAp73/∆Np73 transcript detection and possible association of p73α/∆Np73 immunoreactivity with survival. Acta Neuropathol 114:641–650. doi:10.1007/s00401-007-0298-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant IGA MZCR NS10218-3/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Zitterbart.

Additional information

Marta Nekulová and Karel Zitterbart contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekulová, M., Zitterbart, K., Štěrba, J. et al. Analysis of the intracellular localization of p73 N-terminal protein isoforms TAp73 and ∆Np73 in medulloblastoma cell lines. J Mol Hist 41, 267–275 (2010). https://doi.org/10.1007/s10735-010-9288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9288-0

Keywords

Navigation