Skip to main content

Advertisement

Log in

Secreted frizzled related protein 1 (Sfrp1) and Wnt signaling in innervated and denervated skeletal muscle

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Wnts are secreted proteins with functions in differentiation, development and cell proliferation. Wnt signaling has also been implicated in neuromuscular junction formation and may function in synaptic plasticity in the adult as well. Secreted frizzled-related proteins (Sfrps) such as Sfrp1 can function as inhibitors of Wnt signaling. In the present study a potential role of Wnt signaling in denervation was examined by comparing the expression levels of Sfrp1 and key proteins in the canonical Wnt pathway, Dishevelled, glycogen synthase kinase 3β and β-catenin, in innervated and denervated rodent skeletal muscle. Sfrp1 mRNA and immunoreactivity were found to be up-regulated in mouse hemidiaphragm muscle following denervation. Immunoreactivity, detected by Western blots, and mRNA, detected by Northern blots, were both expressed in extrasynaptic as well as perisynaptic parts of the denervated muscle. Immunoreactivity on tissue sections was, however, found to be concentrated postsynaptically at neuromuscular junctions. Using β-catenin levels as a readout for canonical Wnt signaling no evidence for decreased canonical Wnt signaling was obtained in denervated muscle. A role for Sfrp1 in denervated muscle, other than interfering with canonical Wnt signaling, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA (1999) Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J Biol Chem 274:16180–16187

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Park CS, Tang S-J (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281:11910–11916

    Article  PubMed  CAS  Google Scholar 

  • Ciani L, Salinas PC (2005) Wnts in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes-Diaz C, Goudou D, Mège R-M, Velasco E, Nicolet M, Herrenknecht K, Rubin L, Rieger F (1998) Distinct location and prevalence of α-, β-catenins and γ-catenin/plakoglobin in developing and denervated skeletal muscle. Cell Adhes Commun 5:161–176

    Article  PubMed  CAS  Google Scholar 

  • Ding VW, Chen R-H, McCormick F (2000) Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J Biol Chem 275:32475–32481

    Article  PubMed  CAS  Google Scholar 

  • Esteve P, Trousse F, Rodríguez J, Bovolenta P (2003) SFRP1 modulates retina cell differentiation through a β-catenin-independent mechanism. J Cell Sci 116:2471–2481

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Ramirez SH, Garcia TM, Dewhurst S (2004) Dishevelled promotes neurite outgrowth in neuronal differentiating neuroblastoma 2A cells, via a DIX-domain dependent pathway. Brain Res Mol Brain Res 132:38–50

    Article  PubMed  CAS  Google Scholar 

  • Fertuck HC, Salpeter MM (1974) Localization of acetylcholine receptor by 125I-labelled α-bungarotoxin binding at mouse motor endplates. Proc Nat Acad Sci USA 71:1376–1378

    Article  PubMed  CAS  Google Scholar 

  • Finch PW, He X, Kelley MJ, Üren A, Schaudies RP, Popescu NC, Rudikoff S, Aaronson SA, Varmus HE, Rubin JS (1997) Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action. Proc Natl Acad Sci 94:6770–6775

    Article  PubMed  CAS  Google Scholar 

  • González-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AMC (2004) Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize β-catenin. Mol Cell Biol 24:4757–4768

    Article  PubMed  CAS  Google Scholar 

  • Kim C-H, Xiong WC, Mei L (2003) Regulation of MuSK expression by a novel signaling pathway. J Biol Chem 278:38522–38527

    Article  PubMed  CAS  Google Scholar 

  • Lee J-S, Ishimoto A, Yanagawa S-I (1999) Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem 274:21464–21470

    Article  PubMed  CAS  Google Scholar 

  • Levin JM, El Andalousi RA, Dainat J, Reyne Y, Bacou F (2001) SFRP2 expression in rabbit myogenic progenitor cells and in adult skeletal muscles. J Muscle Res Cell Motil 22:361–369

    Article  PubMed  CAS  Google Scholar 

  • Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L (2002) Regulation of AChR clustering by dishevelled interacting with MuSK and PAK1. Neuron 35:489–505

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Wang Q, Dobbins GC, Levy S, Xiong WC, Mei L (2003) Signaling complexes for postsynaptic differentiation. J Neurocytol 32:697–708

    Article  PubMed  CAS  Google Scholar 

  • Magnusson C, Högklint L, Libelius R, Tågerud S (2001) Expression of mRNA for plasminogen activators and protease nexin-1 in innervated and denervated mouse skeletal muscle. J Neurosci Res 66:457–463

    Article  PubMed  CAS  Google Scholar 

  • Magnusson C, Libelius R, Tågerud S (2003) Nogo (reticulon 4) expression in innervated and denervated mouse skeletal muscle. Mol Cell Neurosci 22:298–307

    Article  PubMed  CAS  Google Scholar 

  • Magnusson C, Svensson A, Christerson U, Tågerud S (2005) Denervation-induced alterations in gene expression in mouse skeletal muscle. Eur J Neursci 21:577–580

    Article  Google Scholar 

  • McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583

    Article  PubMed  CAS  Google Scholar 

  • Melkonyan HS, Chang WC, Shapiro JP, Mahadevappa M, Fitzpatrick PA, Kiefer MC, Tomei LD, Umansky SR (1997) SARPs: a family of secreted apoptosis-related proteins. Proc Natl Acad Sci 94:13636–13641

    Article  PubMed  CAS  Google Scholar 

  • Packard M, Koo ES, Gorczyca M, Sharpe J, Cumberledge S, Budnik V (2002) The Drosophila Wnt, Wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111:319–330

    Article  PubMed  CAS  Google Scholar 

  • Rattner A, Hsieh J-C, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1997) A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci 94:2859–2863

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez J, Esteve P, Weinl C, Ruiz JM, Fermin Y, Trousse F, Dwivedy A, Holt C, Bovolenta P (2005) SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat Neurosci 8:1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Wallace BG (2003) Lithium inhibits a late step in agrin-induced AChR aggregation. J Neurobiol 54:346–357

    Article  PubMed  CAS  Google Scholar 

  • Svensson A, Libelius R, Tågerud S (2008) Semaphorin 6C expression in innervated and denervated skeletal muscle. J Mol Histol 39:5–13

    Article  PubMed  CAS  Google Scholar 

  • Tang S-J (2007) The synaptic Wnt signaling hypothesis. Synapse 61:866–868

    Article  PubMed  CAS  Google Scholar 

  • Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ (1994) Glycogen synthase kinase-3β is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 269:14566–14574

    PubMed  CAS  Google Scholar 

  • Wang J, Jing Z, Zhang L, Zhou G, Braun J, Yao Y, Wang Z-Z (2003) Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat Neurosci 6:1017–1018

    Article  PubMed  CAS  Google Scholar 

  • Witzemann V (2006) Development of the neuromuscular junction. Cell Tissue Res 326:263–271

    Article  PubMed  Google Scholar 

  • Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88

    Article  PubMed  CAS  Google Scholar 

  • Üren A, Reichsman F, Anest V, Taylor WG, Muraiso K, Bottaro DP, Cumberledge S, Rubin JS (2000) Secreted frizzled-related protein-1 binds directly to wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 275:4374–4382

    Article  PubMed  Google Scholar 

  • Zhang B, Luo S, Dong X-P, Zhang X, Liu C, Luo Z, Xiong W-C, Mei L (2007) β-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J Neurosci 27:3968–3973

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229:380–392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Lennart Mellblom and Anita Jäderberg for providing access to cryostats at the County Hospital in Kalmar. This work was supported by grants from the Faculty of Natural Sciences and Technology, University of Kalmar, the Anders Otto Swärd Foundation, the Ulrika Eklund Foundation and from Umeå University Hospital, Clinical Neuroscience Research Fund, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Tågerud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, A., Norrby, M., Libelius, R. et al. Secreted frizzled related protein 1 (Sfrp1) and Wnt signaling in innervated and denervated skeletal muscle. J Mol Hist 39, 329–337 (2008). https://doi.org/10.1007/s10735-008-9169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-008-9169-y

Keywords

Navigation