Skip to main content

Advertisement

Log in

Olfactory epithelium progenitors: insights from transgenic mice and in vitro biology

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The rodent olfactory epithelium (OE) is capable of prolonged neurogenesis, beginning at E10 in the embryo and continuing throughout adulthood. Significant progress has been made over the last 10 years in revealing the signals that drive induction, differentiation and survival of its Olfactory Receptor Neurons (ORNs). Our understanding of the identity of specific progenitors or precursors that respond to these signals is, however, less well developed, and the search is still on for the elusive, definitive multipotent neuro-glial OE “Stem cell”. Here, we review several lines of evidence that support the existence of a heterogeneous population of neural and glial progenitors in the olfactory mucosa, and highlight the differences in the identity and activity of progenitors found in the embryonic and adult OE. In particular, we show how recent advances in mouse transgenesis, and in the development of in vitro assays of progenitor activity, have helped to demonstrate the existence of multiple classes of olfactory mucosa-based progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman J (1969) Postnatal neurogenesis and the problem of neural plasticity. In: Himwich W (ed) Developmental neurobiology. Charles C. Thomas, Springfield, III., pp 197–257

    Google Scholar 

  • Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    PubMed  CAS  Google Scholar 

  • Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2005) Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev 19:1028–1033

    PubMed  CAS  Google Scholar 

  • Asson-Batres MA, Smith WB (2006) Localization of retinaldehyde dehydrogenases and retinoid binding proteins to sustentacular cells, glia, Bowman's gland cells, and stroma: potential sites of retinoic acid synthesis in the postnatal rat olfactory organ. J Comp Neurol 496:149–171

    Google Scholar 

  • Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    PubMed  CAS  Google Scholar 

  • Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41:224–236

    PubMed  Google Scholar 

  • Balmer CW, LaMantia AS, Bhasin N, Rhodes K, Heemskerk J (2005) Noses and neurons: induction, morphogenesis, and neuronal differentiation in the peripheral olfactory pathway Mesenchymal/epithelial induction mediates olfactory pathway formation. Dev Dyn 234:464–481

    PubMed  CAS  Google Scholar 

  • Bauer S, Rasika S, Han J, Mauduit C, Raccurt M, Morel G, Jourdan F, Benahmed M, Moyse E, Patterson PH (2003) Leukemia inhibitory factor is a key signal for injury-induced neurogenesis in the adult mouse olfactory epithelium. J Neurosci 23:1792–1803

    PubMed  CAS  Google Scholar 

  • Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306:309–316

    PubMed  CAS  Google Scholar 

  • Bergman U, Ostergren A, Gustafson AL, Brittebo B (2002) Differential effects of olfactory toxicants on olfactory regeneration. Arch Toxicol 76:104–112

    PubMed  CAS  Google Scholar 

  • Bergstrom U, Giovanetti A, Piras E, Brittebo EB (2003) Methimazole-induced damage in the olfactory mucosa: effects on ultrastructure and glutathione levels. Toxicol Pathol 31:379–387

    PubMed  Google Scholar 

  • Booth C, Potten CS (2000) Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 105:1493–1499

    PubMed  CAS  Google Scholar 

  • Brazel CY, Rao MS (2004) Aging and neuronal replacement. Ageing Res Rev 3:465–483

    PubMed  Google Scholar 

  • Brittebo EB (1995) Metabolism-dependent toxicity of methimazole in the olfactory nasal mucosa. Pharmacol Toxicol 76:76–79

    Article  PubMed  CAS  Google Scholar 

  • Caggiano M, Kauer JS, Hunter DD (1994) Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 13:339–352

    PubMed  CAS  Google Scholar 

  • Calof AL, Chikaraishi DM (1989) Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro. Neuron 3:115–127

    PubMed  CAS  Google Scholar 

  • Calof AL, Mumm JS, Rim PC, Shou J (1998a) The neuronal stem cell of the olfactory epithelium. J Neurobiol 36:190–205

    PubMed  CAS  Google Scholar 

  • Calof AL, Rim PC, Askins KJ, Mumm JS, Gordon MK, Iannuzzelli P, Shou J (1998b) Factors regulating neurogenesis and programmed cell death in mouse olfactory epithelium. Ann N Y Acad Sci 855:226–229

    PubMed  CAS  Google Scholar 

  • Camara CG, Harding JW (1984) Thymidine incorporation in the olfactory epithelium of mice: early exponential response induced by olfactory neurectomy. Brain Res 308:63–68

    PubMed  CAS  Google Scholar 

  • Campos LS, Leone DP, Relvas JB, Brakebusch C, Fassler R, Suter U, Ffrench-Constant C (2004) Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131:3433–3444

    PubMed  CAS  Google Scholar 

  • Carr VM, Farbman AI (1992) Ablation of the olfactory bulb up-regulates the rate of neurogenesis and induces precocious cell death in olfactory epithelium. Exp Neurol 115:55–59

    PubMed  CAS  Google Scholar 

  • Carson C, Murdoch B, Roskams AJ (2006) Notch 2 and Notch 1/3 segregate to neuronal and glial lineages of the developing olfactory epithelium. Dev Dyn 235:1678–1688

    PubMed  CAS  Google Scholar 

  • Carter LA, MacDonald JL, Roskams AJ (2004) Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 24:5670–5683

    PubMed  CAS  Google Scholar 

  • Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129:1871–1880

    PubMed  CAS  Google Scholar 

  • Cau E, Gradwohl G, Fode C, Guillemot F (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124:1611–1621

    PubMed  CAS  Google Scholar 

  • Cau E, Gradwohl G, Casarosa S, Kageyama R, Guillemot F, Fode C (2000) Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 127:2323–2332

    PubMed  CAS  Google Scholar 

  • Cayouette M, Raff M (2003) The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130:2329–2339

    PubMed  CAS  Google Scholar 

  • Cayouette M, Barres BA, Raff M (2003) Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron 40:897–904

    PubMed  CAS  Google Scholar 

  • Chen X, Fang H, Schwob JE (2004) Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 469:457–474

    PubMed  Google Scholar 

  • Chuah MI, Teague R (1999) Basic fibroblast growth factor in the primary olfactory pathway: mitogenic effect on ensheathing cells. Neuroscience 88:1043–1050

    PubMed  CAS  Google Scholar 

  • Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182

    PubMed  CAS  Google Scholar 

  • Corti S, Nizzardo M, Nardini M, Donadoni C et al (2007) Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol 205:547–562

    PubMed  CAS  Google Scholar 

  • Costanzo RM, Graziadei PP (1983) A quantitative analysis of changes in the olfactory epithelium following bulbectomy in hamster. J Comp Neurol 215:370–381

    PubMed  CAS  Google Scholar 

  • Cowan CM, Roskams AJ (2004) Caspase-3 and caspase-9 mediate developmental apoptosis in the mouse olfactory system. J Comp Neurol 474:136–148

    PubMed  CAS  Google Scholar 

  • Cowan CM, Thai J, Krajewski S, Reed JC, Nicholson DW, Kaufmann SH, Roskams AJ (2001) Caspases 3 and 9 send a pro-apoptotic signal from synapse to cell body in olfactory receptor neurons. J Neurosci 21:7099–7109

    PubMed  CAS  Google Scholar 

  • Cummings DM, Brunjes PC (1997) The effects of variable periods of functional deprivation on olfactory bulb development in rats. Exp Neurol 148:360–366

    PubMed  CAS  Google Scholar 

  • Cuschieri A, Bannister LH (1975) The development of the olfactory mucosa in the mouse: light microscopy. J Anat 119:277–286

    PubMed  CAS  Google Scholar 

  • Davis JA, Reed RR (1996) Role of Olf-1 and Pax-6 transcription factors in neurodevelopment. J Neurosci 16:5082–5094

    PubMed  CAS  Google Scholar 

  • DeHamer MK, Guevara JL, Hannon K, Olwin BB, Calof AL (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13:1083–1097

    PubMed  CAS  Google Scholar 

  • De_Carlos JA, Lopez_Mascaraque L, Valverde F (1995) The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 68:1167–1178

    PubMed  CAS  Google Scholar 

  • Doyle KL, Khan M, Cunningham AM (2001) Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol 437:186–195

    PubMed  CAS  Google Scholar 

  • Ezeh PI, Farbman AI (1998) Differential activation of ErbB receptors in the rat olfactory mucosa by transforming growth factor-alpha and epidermal growth factor in vivo. J Neurobiol 37:199–210

    PubMed  CAS  Google Scholar 

  • Farbman AI (1990) Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 13:362–365

    PubMed  CAS  Google Scholar 

  • Farbman AI (1992) Cell Biology of Olfaction. Cambridge University Press, Cambridge

    Google Scholar 

  • Farbman AI, Margolis FL (1980) Olfactory marker protein during ontogeny: immunohistochemical localization. Dev Biol 74:205–215

    PubMed  CAS  Google Scholar 

  • Farbman AI, Buchholz JA (1996) Transforming growth factor-alpha and other growth factors stimulate cell division in olfactory epithelium in vitro. J Neurobiol 30:267–280

    PubMed  CAS  Google Scholar 

  • Farbman AI, Brunjes PC, Rentfro L, Michas J, Ritz S (1988) The effect of unilateral naris occlusion on cell dynamics in the developing rat olfactory epithelium. J Neurosci 8:3290–3295

    PubMed  CAS  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    PubMed  CAS  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    PubMed  CAS  Google Scholar 

  • Fishell G, Kriegstein A (2005) Cortical development: new concepts. Neuron 46:361–362

    PubMed  CAS  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    PubMed  CAS  Google Scholar 

  • Getchell TV, Narla RK, Little S, Hyde JF, Getchell ML (2000) Horizontal basal cell proliferation in the olfactory epithelium of transforming growth factor-alpha transgenic mice. Cell Tissue Res 299:185–192

    PubMed  CAS  Google Scholar 

  • Getchell TV, Shah DS, Partin JV, Subhedar NK, Getchell ML (2002) Leukemia inhibitory factor mRNA expression is upregulated in macrophages and olfactory receptor neurons after target ablation. J Neurosci Res 67:246–254

    PubMed  CAS  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Google Scholar 

  • Goldstein BJ, Schwob JE (1996) Analysis of the globose basal cell compartment in rat olfactory epithelium using GBC-1, a new monoclonal antibody against globose basal cells. J Neurosci 16:4005–4016

    PubMed  CAS  Google Scholar 

  • Goldstein BJ, Wolozin BL, Schwob JE (1997) FGF2 suppresses neuronogenesis of a cell line derived from rat olfactory epithelium. J Neurobiol 33:411–428

    PubMed  CAS  Google Scholar 

  • Goldstein BJ, Fang H, Youngentob SL, Schwob JE (1998) Transplantation of multipotent progenitors from the adult olfactory epithelium. Neuroreport 9:1611–1617

    PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    PubMed  CAS  Google Scholar 

  • Gordon MK, Mumm JS, Davis RA, Holcomb JD, Calof AL (1995) Dynamics of MASH1 expression in vitro and in vivo suggest a non-stem cell site of MASH1 action in the olfactory receptor neuron lineage. Mol Cell Neurosci 6:363–379

    PubMed  CAS  Google Scholar 

  • Gotz M, Huttner WB, Haubensak W, Attardo A, Denk W (2005) The cell biology of neurogenesis Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Google Scholar 

  • Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18

    PubMed  CAS  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    PubMed  CAS  Google Scholar 

  • Halpern M, Martinez-Marcos A (2003) Structure and function of the vomeronasal system: an update. Prog Neurobiol 70:245–318

    PubMed  CAS  Google Scholar 

  • Harding JW, Getchell TV, Margolis FL (1978) Denervation of the primary olfactory pathway in mice. V. Long-term effect of intranasal ZnSO4 irrigation on behavior, biochemistry and morphology. Brain Res 140:271–285

    PubMed  CAS  Google Scholar 

  • Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 380:171–175

    PubMed  CAS  Google Scholar 

  • Hockfield S, McKay RD (1985) Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5:3310–3328

    PubMed  CAS  Google Scholar 

  • Holbrook EH, Szumowski KE, Schwob JE (1995) An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium. J Comp Neurol 363:129–146

    PubMed  CAS  Google Scholar 

  • Holcomb JD, Mumm JS, Calof AL (1995) Apoptosis in the neuronal lineage of the mouse olfactory epithelium: regulation in vivo and in vitro. Dev Biol 172:307–323

    PubMed  CAS  Google Scholar 

  • Hsu P, Yu F, Feron F, Pickles JO, Sneesby K, Mackay-Sim A (2001) Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 896:188–197

    PubMed  CAS  Google Scholar 

  • Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400:469–486

    PubMed  CAS  Google Scholar 

  • Hurley RW, McCarthy JB, Verfaillie CM (1995) Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest 96:511–519

    Article  PubMed  CAS  Google Scholar 

  • Hurley RW, McCarthy JB, Wayner EA, Verfaillie CM (1997) Monoclonal antibody crosslinking of the alpha 4 or beta 1 integrin inhibits committed clonogenic hematopoietic progenitor proliferation. Exp Hematol 25:321–328

    PubMed  CAS  Google Scholar 

  • Illing N, Boolay S, Siwoski JS, Casper D, Lucero MT, Roskams AJ (2002) Conditionally immortalized clonal cell lines from the mouse olfactory placode differentiate into olfactory receptor neurons. Mol Cell Neurosci 20:225–243

    Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    PubMed  CAS  Google Scholar 

  • Iwema CL, Fang H, Kurtz DB, Youngentob SL, Schwob JE (2004) Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. J Neurosci 24:356–369

    PubMed  CAS  Google Scholar 

  • Jang W, Youngentob SL, Schwob JE (2003) Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 460:123–140

    PubMed  Google Scholar 

  • Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235:2376–2385

    PubMed  Google Scholar 

  • Kawauchi S, Shou J, Santos R, Hebert JM, McConnell SK, Mason I, Calof AL (2005) Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132:5211–5223. Epub 2005 Nov 5212

    Google Scholar 

  • Kim J, Wu HH, Lander AD, Lyons KM, Matzuk MM, Calof AL (2005) GDF11 controls the timing of progenitor cell competence in developing retina. Science 308:1927–1930

    PubMed  CAS  Google Scholar 

  • Krishna NS, Little SS, Getchell TV (1996) Epidermal growth factor receptor mRNA and protein are expressed in progenitor cells of the olfactory epithelium. J Comp Neurol 373:297–307

    Google Scholar 

  • LaMantia AS, Bhasin N, Rhodes K, Heemskerk J (2000) Mesenchymal/epithelial induction mediates olfactory pathway formation. Neuron 28:411–425

    PubMed  CAS  Google Scholar 

  • Lemischka I (2001) Stem cell dogmas in the genomics era. Rev Clin Exp Hematol 5:15–25

    PubMed  CAS  Google Scholar 

  • Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10(6):720–726

    PubMed  CAS  Google Scholar 

  • Levesque JP, Simmons PJ (1999) Cytoskeleton and integrin-mediated adhesion signaling in human CD34 + hemopoietic progenitor cells. Exp Hematol 27:579–586

    PubMed  CAS  Google Scholar 

  • Lledo PM, Carleton A, Vincent JD (2002) [Odors and olfaction]. J Soc Biol 196:59–65

    PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    PubMed  CAS  Google Scholar 

  • Mackay-Sim A, Kittel P (1991) Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J Neurosci 11:979–984

    PubMed  CAS  Google Scholar 

  • Mahanthappa NK, Schwarting GA (1993) Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-beta s. Neuron 10:293–305

    PubMed  CAS  Google Scholar 

  • Manglapus GL, Youngentob SL, Schwob JE (2004) Expression patterns of basic helix-loop-helix transcription factors define subsets of olfactory progenitor cells. J Comp Neurol 479:216–233

    PubMed  CAS  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    PubMed  CAS  Google Scholar 

  • McKay R (2000) Stem cells and the cellular organization of the brain. J Neurosci Res 59:298–300

    PubMed  CAS  Google Scholar 

  • Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22:74–85

    PubMed  CAS  Google Scholar 

  • Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311–324

    PubMed  CAS  Google Scholar 

  • Morrison SJ (2001) Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol 13:666–672

    PubMed  CAS  Google Scholar 

  • Morshead CM, Benveniste P, Iscove NN, van der Kooy D (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8:268–273

    PubMed  CAS  Google Scholar 

  • Moulton DG (1974) Dynamics of cell populations in the olfactory epithelium. Ann N Y Acad Sci 237:52–61

    PubMed  CAS  Google Scholar 

  • Mumm JS, Shou J, Calof AL (1996) Colony-forming progenitors from mouse olfactory epithelium: evidence for feedback regulation of neuron production. Proc Natl Acad Sci USA 93:11167–11172

    PubMed  CAS  Google Scholar 

  • Murdoch B, Roskams A (2007) A Novel Embryonic Nestin-Expressing Radial Glia-Like Progenitor Gives Rise To Spatially Restricted Olfactory And Vomeronasal Neurons. J Neurosci under review

  • Murray RC, Navi D, Fesenko J, Lander AD, Calof AL (2003) Widespread defects in the primary olfactory pathway caused by loss of Mash1 function. J Neurosci 23:1769–1780

    PubMed  CAS  Google Scholar 

  • Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C, Lee G, Mackay-Sim A (2005) Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233:496–515

    PubMed  Google Scholar 

  • Nan B, Getchell ML, Partin JV, Getchell TV (2001) Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. Journal of Comparative Neurology 435:60–77

    PubMed  CAS  Google Scholar 

  • Newman MP, Feron F, Mackay-Sim A (2000) Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 99:343–350

    PubMed  CAS  Google Scholar 

  • Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155

    PubMed  CAS  Google Scholar 

  • Othman M, Lu C, Klueber K, Winstead W, Roisen F (2005) Clonal analysis of adult human olfactory neurosphere forming cells. Biotech Histochem 80:189–200

    PubMed  CAS  Google Scholar 

  • Othman MM, Klueber KM, Roisen FJ (2003) Identification and culture of olfactory neural progenitors from GFP mice. Biotech Histochem 78:57–70

    PubMed  CAS  Google Scholar 

  • Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA 92:9647–9651

    PubMed  CAS  Google Scholar 

  • Peretto P, Cummings D, Modena C, Behrens M, Venkatraman G, Fasolo A, Margolis FL (2002) BMP mRNA and protein expression in the developing mouse olfactory system. J Comp Neurol 451:267–278

    PubMed  CAS  Google Scholar 

  • Piras E, Franzen A, Fernandez EL, Bergstrom U, Raffalli-Mathieu F, Lang M, Brittebo EB (2003) Cell-specific expression of CYP2A5 in the mouse respiratory tract: effects of olfactory toxicants. J Histochem Cytochem 51:1545–1555

    Google Scholar 

  • Pixley SK (1996) Characterization of olfactory receptor neurons and other cell types in dissociated rat olfactory cell cultures. Int J Dev Neurosci 14:823–839

    PubMed  CAS  Google Scholar 

  • Potocnik AJ, Brakebusch C, Fassler R (2000) Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12:653–663

    PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    PubMed  CAS  Google Scholar 

  • Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ (2004) Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol 473:1–15

    Google Scholar 

  • Ramon-Cueto A, Nieto-Sampedro M (1992) Glial cells from adult rat olfactory bulb: immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47:213–220

    PubMed  CAS  Google Scholar 

  • Rao M (2004) Stem and precursor cells in the nervous system. J Neurotrauma 21:415–427

    PubMed  CAS  Google Scholar 

  • Regad T, Roth M, Bredenkamp N, Illing N, Papalopulu N (2007) The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat Cell Biol 9:531–540

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    PubMed  CAS  Google Scholar 

  • Richter M, Roskams A (2007) The cell biology of olfactory ensheathing glia. Glia submitted

  • Roisen FJ, Klueber KM, Lu CL, Hatcher LM, Dozier A, Shields CB, Maguire S (2001) Adult human olfactory stem cells. Brain Res 890:11–22

    PubMed  CAS  Google Scholar 

  • Roskams AJ, Bredt DS, Dawson TM, Ronnett GV (1994) Nitric oxide mediates the formation of synaptic connections in developing and regenerating olfactory receptor neurons. Neuron 13:289–299

    PubMed  CAS  Google Scholar 

  • Roskams AJ, Bethel MA, Hurt KJ, Ronnett GV (1996) Sequential expression of Trks A, B, and C in the regenerating olfactory neuroepithelium. J Neurosci 16:1294–1307

    PubMed  CAS  Google Scholar 

  • Roskams AJ, Cai X, Ronnett GV (1998) Expression of neuron-specific beta-III tubulin during olfactory neurogenesis in the embryonic and adult rat. Neuroscience 83:191–200

    Google Scholar 

  • Satoh M, Yoshida T (1997) Promotion of neurogenesis in mouse olfactory neuronal progenitor cells by leukemia inhibitory factor in vitro. Neurosci Lett 225:165–168

    PubMed  CAS  Google Scholar 

  • Satoh M, Yoshida T (2000) Expression of neural properties in olfactory cytokeratin-positive basal cell line. Brain Res Dev Brain Res 121:219–222

    PubMed  CAS  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    PubMed  CAS  Google Scholar 

  • Schwanzel-Fukuda M (1999) Origin and migration of luteinizing hormone-releasing hormone neurons in mammals. Microsc Res Tech 44:2–10

    PubMed  CAS  Google Scholar 

  • Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49

    PubMed  Google Scholar 

  • Schwob JE (2005) Restoring olfaction: a view from the olfactory epithelium. Chem Senses 30 (Suppl 1):i131–i132

    PubMed  Google Scholar 

  • Schwob JE, Szumowski KE, Stasky AA (1992) Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J Neurosci 12:3896–3919

    PubMed  CAS  Google Scholar 

  • Schwob JE, Youngentob SL, Meiri KF (1994) On the formation of neuromata in the primary olfactory projection. J Comp Neurol 340:361–380

    PubMed  CAS  Google Scholar 

  • Schwob JE, Youngentob SL, Mezza RC (1995) Reconstitution of the rat olfactory epithelium after methyl bromide- induced lesion. J Comp Neurol 359:15–37

    PubMed  CAS  Google Scholar 

  • Shetty RS, Bose SC, Nickell MD, McIntyre JC, Hardin DH, Harris AM, McClintock TS (2005) Transcriptional changes during neuronal death and replacement in the olfactory epithelium. Mol Cell Neurosci 30:90–107

    PubMed  CAS  Google Scholar 

  • Shihabuddin LS, Palmer TD, Gage FH (1999) The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease. Mol Med Today 5:474–480

    PubMed  CAS  Google Scholar 

  • Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    PubMed  CAS  Google Scholar 

  • Shou J, Rim PC, Calof AL (1999) BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor [see comments]. Nat Neurosci 2:339–345

    PubMed  CAS  Google Scholar 

  • Shou J, Murray RC, Rim PC, Calof AL (2000) Opposing effects of bone morphogenetic proteins on neuron production and survival in the olfactory receptor neuron lineage. Development 127:5403–5413

    PubMed  CAS  Google Scholar 

  • Smart IH (1971) Location and orientation of mitotic figures in the developing mouse olfactory epithelium. J Anat 109:243–251

    PubMed  CAS  Google Scholar 

  • Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    PubMed  CAS  Google Scholar 

  • Suzuki A, Zheng Y, Kondo R, Kusakabe M, Takada Y, Fukao K, Nakauchi H, Taniguchi H (2000) Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 32:1230–1239

    PubMed  CAS  Google Scholar 

  • Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C (2003) Single-cell transcriptional analysis of neuronal progenitors. Neuron 38:161–175

    PubMed  CAS  Google Scholar 

  • Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103

    PubMed  CAS  Google Scholar 

  • van der Kooy D, Weiss S (2000) Why stem cells? Science 287:1439–1441

    PubMed  Google Scholar 

  • Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T, McNamara SM, Park DS, Rudnicki M, Slack RS (2004) p107 regulates neural precursor cells in the mammalian brain. J Cell Biol 166(6):853–863.Epub 2004 Sep 2007

    PubMed  CAS  Google Scholar 

  • Voura EB, Billia F, Iscove NN, Hawley RG (1997) Expression mapping of adhesion receptor genes during differentiation of individual hematopoietic precursors. Exp Hematol 25:1172–1179

    PubMed  CAS  Google Scholar 

  • Watt FM (2001) Stem cell fate and patterning in mammalian epidermis. Curr Opin Genet Dev 11:410–417

    PubMed  CAS  Google Scholar 

  • Weiler E, Farbman AI (1997) Proliferation in the rat olfactory epithelium: age-dependent changes. J Neurosci 17:3610–3622

    PubMed  CAS  Google Scholar 

  • Weiss S (1999) Pathways for neural stem cell biology and repair. Nat Biotechnol 17:850–851

    PubMed  CAS  Google Scholar 

  • Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    PubMed  CAS  Google Scholar 

  • Wewetzer K, Brandes G (2006) Axonal signaling and the making of olfactory ensheathing cells: a hypothesis. Neuron Glia Biol 2:217–224

    PubMed  Google Scholar 

  • Whitlock KE (2004) A new model for olfactory placode development. Brain Behav Evol 64:126–140

    PubMed  Google Scholar 

  • Wray S, Grant P, Gainer H (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 86:8132–8136

    PubMed  CAS  Google Scholar 

  • Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of neurogenesis by GDF11. Neuron 37:197–207

    PubMed  CAS  Google Scholar 

  • Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Han B, Mendelsohn M, Jessell TM (2006) PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52:775–788

    PubMed  CAS  Google Scholar 

  • Yu TT, McIntyre JC, Bose SC, Hardin D, Owen MC, McClintock TS (2005) Differentially expressed transcripts from phenotypically identified olfactory sensory neurons. J Comp Neurol 483:251–262

    Google Scholar 

  • Zhang X, Klueber KM, Guo Z, Lu C, Roisen FJ (2004) Adult human olfactory neural progenitors cultured in defined medium. Exp Neurol 186:112–123

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jane Roskams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murdoch, B., Roskams, A.J. Olfactory epithelium progenitors: insights from transgenic mice and in vitro biology. J Mol Hist 38, 581–599 (2007). https://doi.org/10.1007/s10735-007-9141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9141-2

Keywords

Navigation