Skip to main content
Log in

Lagrangian heuristics for scheduling new product development projects in the pharmaceutical industry

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

To stay ahead of their competition, pharmaceutical firms must make effective use of their new product development (NPD) capabilities by efficiently allocating its analytical, clinical testing and manufacturing resources across various drug development projects. The resulting project scheduling problems involve coordinating hundreds of testing and manufacturing activities over a period of several quarters. Most conventional integer programming approaches are computationally impractical for problems of this size, while priority rule-driven heuristics seldom provide consistent solution quality. We propose a Lagrangian decomposition (LD) heuristic that exploits the special structure of these problems. Some resources (typically manpower) are shared across all on-going projects while others (typically equipment) are specific to individual project categories. Our objective function is a weighted discounted cost expressed in terms of activity completion times. The LD heuristics were subjected to a comprehensive experimental study based on typical operational instances. While the conventional “Reward–Risk” priority rule heuristic generates duality gaps between 47–58%, the best LD heuristic achieves duality gaps between 10–20%. The LD heuristics also yield makespan reductions of over 30% over the Reward–Risk priority rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroum, S., Patterson, J.: The development of cash flow weight procedures for maximizing the net present value of a project. J. Oper. Manag. 14(3), 209–228 (1996)

    Article  Google Scholar 

  • Blau, G.E., Pekny, J.F., Varma, V.A., Bunch, P.: Selecting a portfolio of dependent new product candidates in the pharmaceutical industry. J. Prod. Innov. Manag. 21(4), 227–245 (2004)

    Article  Google Scholar 

  • Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for resource constrained project scheduling problem. Eur. J. Oper. Res. 107(2), 272–288 (1998)

    Article  MATH  Google Scholar 

  • Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999)

    Article  MATH  Google Scholar 

  • Davis, E.W., Patterson, J.H., A comparison of heuristic and optimum solutions in resource constrained project scheduling. Manag. Sci. 21(8), 944–955 (1975)

    Google Scholar 

  • Deckro, R.F., Winkofsky, E.P., Hebert, J.E., Gagnon, R.: A decomposition approach to multi-project scheduling. Eur. J. Oper. Res. 51, 110–118 (1991)

    Article  MATH  Google Scholar 

  • Demeulemeester, E., Herroelen, W.: A branch and bound procedure for the multiple resource-constrained project scheduling problem. Manag. Sci. 38(12), 1803–1818 (1992)

    MATH  Google Scholar 

  • Demeulemeester, E., Herroelen, W.: A branch and bound procedure for the generalized resource-constrained project scheduling problem. Oper. Res. 45(2), 201–212 (1997)

    MATH  Google Scholar 

  • Demeulemeester, E., Herroelen, W.: Project Scheduling: A Research Handbook. Kluwer, Boston (2002)

    MATH  Google Scholar 

  • Elmaghraby, S.E.: Activity Networks: Project Planning and Control by Network Models. Wiley, New York (1977)

    MATH  Google Scholar 

  • Grunow, M., Gunther, H., Yang, G.: Development of a decision support model for scheduling clinical studies and assigning medical personnel. Heal. Care Manag. Sci. 7(4), 305–317 (2004)

    Article  Google Scholar 

  • Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Ann. Oper. Res. 102, 111–135 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Honkomp, S.J., Reklaitis, G.V., Pekny, J.F.: Robust planning and scheduling of process development projects under stochastic conditions. In: AIChE Annual Meeting, Los Angeles, CA, 1997

  • Icmeli, O., Erenguc, S.: A branch and bound procedure for resource constrained project scheduling problem with discounted cash flows. Manag. Sci. 42(10), 1395–1408 (1996a)

    MATH  Google Scholar 

  • Icmeli, O., Erenguc, S.S.: The resource-constrained time/cost trade-off project scheduling problem with discounted cash flows. J. Oper. Manag. 14(3), 255–275 (1996b)

    Article  Google Scholar 

  • ILOG: ILOG CPLEX Solver Engine. http://www.ilog.com

  • Jain, V., Grossmann, I.E.: Resource constrained scheduling of tests in new product development. Ind. Eng. Chem. Res. 38, 3013–3026 (1999)

    Article  Google Scholar 

  • Kaskavelis, C., Caramanis, M.: Efficient Lagrangian relaxation algorithms for industry size job-shop scheduling problems. IIE Trans. 30, 1085–1097 (1998)

    Google Scholar 

  • Kolisch, R.: Efficient priority rules for resource-constrained project scheduling problem. J. Oper. Manag. 14(3), 179–192 (1996a)

    Article  Google Scholar 

  • Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90(2), 320–333 (1996b)

    Article  MATH  Google Scholar 

  • Kolisch, R., Drexl, A.: Local search for non-preemptive multi-mode resource constrained project scheduling. IIE Trans. 29(11), 987–999 (1997)

    Google Scholar 

  • Maravelias, C., Grossman, I.: Simultaneous planning for new product development and batch manufacturing facilties. Ind. Eng. Chem. Res. 40, 6147–6164 (2001)

    Article  Google Scholar 

  • Mesquite Software Inc.: CSIM 18 Simulation Engine. http://www.mesquite.com

  • Mockus, L., Reklaitis, G.V.: Continuous time representation approach to batch and continuous process scheduling 2. Computational issues. Ind. Eng. Chem. Res. 38, 204–210 (1999)

    Article  Google Scholar 

  • Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manag. Sci. 49(3), 330–350 (2003)

    Article  Google Scholar 

  • Naphade, K.S., Wu, S.D., Storer, R.H.: Problem space search algorithms for resource-constrained project scheduling. Ann. Oper. Res. 70, 307–326 (1997)

    Article  MATH  Google Scholar 

  • Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Patterson, J.H.: A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Manag. Sci. 30(7), 854–867 (1984)

    Google Scholar 

  • Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  • Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multi-project scheduling with limited resources: A zero-one programming approach. Manag. Sci. 16, 93–107 (1969)

    Article  Google Scholar 

  • Rodriguez, D.: Decisions of pharmaceutical firms for new product development. MIT Industrial Performance Center. http://web.mit.edu/ipc/www/Decisions.pdf (1998)

  • Salewski, F., Schirmer, A., Drexl, A.: Project scheduling under resource and mode identity constraints: model, complexity, methods, and application. Eur. J. Oper. Res. 102(1), 88–110 (1997)

    Article  MATH  Google Scholar 

  • Sprecher, A., Kolisch, R.: PSPLIB – a project scheduling problem library. Eur. J. Oper. Res. 96, 205–216 (1996)

    Google Scholar 

  • Subramanian, D.S., Pekny, J.F., Reklaitis, G.V.: A simulation-optimization framework for stochastic optimization of R&D pipelines. AIChE J. 49(1), 96–112 (2003)

    Article  Google Scholar 

  • Uzsoy, R., Rardin, R.L.: Experimental evaluation of heuristic optimization algorithms: a tutorial. J. Heuristics 7(3), 261–304 (2001)

    Article  MATH  Google Scholar 

  • Vercellis, C.: Constrained multi-project planning problems: A Lagrangian decomposition approach. Eur. J. Oper. Res. 78, 267–275 (1994)

    Article  MATH  Google Scholar 

  • Viswanadham, N., Narahari, Y.: Queueing network modelling and lead time compression of pharmaceutical drug development. Int. J. Prod. Res. 39(2), 395–412 (2001)

    Article  MATH  Google Scholar 

  • Wiley, V.D., Deckro, R.F., Jackson Jr., J.A.: Optimization analysis for design and planning of multi-project programs. Eur. J. Oper. Res. 107(2), 492–506 (1998)

    Article  MATH  Google Scholar 

  • Wu, D., Ierapetritou, M.G.: Decomposition approaches for the efficient solution of short-term scheduling problems. Comput. Chem. Eng. 27(8–9), 1261–1276 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reha Uzsoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, V.A., Uzsoy, R., Pekny, J. et al. Lagrangian heuristics for scheduling new product development projects in the pharmaceutical industry. J Heuristics 13, 403–433 (2007). https://doi.org/10.1007/s10732-007-9016-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-007-9016-4

Keywords

Navigation