Skip to main content

Advertisement

Log in

A two-stage robust optimization approach for the master surgical schedule problem under uncertainty considering downstream resources

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

This paper addresses a planning decision for operating rooms (ORs) that aim at supporting hospital management. Focusing on elective patients, we determined the master surgical schedule (MSS) on a one-week time horizon. We assigned the specialties to available sessions and allocated surgeries to them while taking into consideration the priorities of the outpatients in the ambulatory surgical discipline. Surgeries were selected from the waiting lists according to their priorities. The proposed approach considered operating theater (OT) restrictions, patients’ priorities and accounted for the availability of both intensive care unit (ICU) beds and post-surgery beds. Since the management decisions of hospitals are usually made in an uncertain environment, our approach considered the uncertainty of surgery duration and availability of ICU bed. Two robust optimization approaches that kept the model computationally tractable are described and applied to deal with uncertainty. Computational results based on a medium-sized French hospital archives have been presented to compare the robust models to the deterministic counterpart and to demonstrate the price of robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Addis B, Carello G, Tànfani E (2014) A robust optimization approach for the Advanced Scheduling Problem with uncertain surgery duration in Operating Room Planning - an extended analysis

  2. Agnetis A, Coppi A, Corsini M, Dellino G, Meloni C, Pranzo M (2012) Long term evaluation of operating theater planning policies. Oper Res Health Care 4(1):95–104. https://doi.org/10.1016/j.orhc.2012.10.001

    Article  Google Scholar 

  3. Agnetis A, Coppi A, Corsini M, Dellino G, Meloni C, Pranzo M (2014) A decomposition approach for the combined master surgical schedule and surgical case assignment problems. Health Care Manag Sci 17(1):49–59. https://doi.org/10.1007/s10729-013-9244-0

    Article  Google Scholar 

  4. Ahmadi-Javid A, Jalali Z, Klassen K (2017) Outpatient appointment systems in healthcare: A review of optimization studies. Eur J Oper Res 258(1):3–34. https://doi.org/10.1016/j.ejor.2016.06.064

    Article  Google Scholar 

  5. ANAP and HAS (2013) Together for the development of day surgery. Day surgery: an overview. https://www.has-sante.fr/upload/docs/application/pdf/2013-11/day_surgery_-_an_overview.pdf, Accessed 07 March 2020

  6. Aringhieri R, Landa P, Soriano P, Tànfani E, Testi A (2015a) A two level metaheuristic for the operating room scheduling and assignment problem. Comput Oper Res 54:21–34. https://doi.org/10.1016/j.cor.2014.08.014

    Article  Google Scholar 

  7. Aringhieri R, Landa P, Tànfani E (2015b) Assigning surgery cases to operating rooms: a vns approach for leveling ward beds occupancies. Electron Notes Discrete Math 47:173–180. https://doi.org/10.1016/j.endm.2014.11.023

    Article  Google Scholar 

  8. Aslani N, Kuzgunkaya O, Vidyarthi N, et al. (2021) A robust optimization model for tactical capacity planning in an outpatient setting. Health Care Manag Sci 24:26–40. https://doi.org/10.1007/s10729-020-09528-y

    Article  Google Scholar 

  9. Augusto V, Perdomo V, Xie X (2008) Operating theatre scheduling using lagrangian relaxations. Eur J Ind 2(2):172–189. https://doi.org/10.1504/EJIE.2008.017350

    Article  Google Scholar 

  10. Augusto V, Xie X, Perdomo V (2010) Operating theatre scheduling with patient recovery in both operating rooms and recovery beds. Comput Ind Eng 58(2):231–238. https://doi.org/10.1016/j.cie.2009.04.019

    Article  Google Scholar 

  11. Beliën J, Demeulemeester E (2007) Building cyclic master surgery schedules with leveled resulting bed occupancy. Eur J Oper Res 176(2):1185–1204. https://doi.org/10.1016/j.ejor.2005.06.063

    Article  Google Scholar 

  12. Beliën J, Demeulemeester E, Cardoen B (2009) A decision support system for cyclic master surgery scheduling with multiple objectives. J Sched 12(2):147–161. https://doi.org/10.1007/s10951-008-0086-4

    Article  Google Scholar 

  13. Ben-Tal A, Nimerovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1–13. https://doi.org/10.1016/S0167-6377(99)00016-4

    Article  Google Scholar 

  14. Ben-Tal A, Nimerovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411–424. https://doi.org/10.1007/PL00011380

    Article  Google Scholar 

  15. Ben-Tal A, Nimerovski A (2008) Selected topics in robust convex optimization. Math Program 112(1):125–158. https://doi.org/10.1007/s10107-006-0092-2

    Article  Google Scholar 

  16. Berg B, Denton B, Erdogan S, Rohleder T, Huschka T (2014) Optimal booking and scheduling in outpatient procedure centers. Comput Oper Res 50:24–57. https://doi.org/10.1016/j.cor.2014.04.007

    Article  Google Scholar 

  17. Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98:49–71. https://doi.org/10.1007/s10107-003-0396-4

    Article  Google Scholar 

  18. Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52 (1):35–53. https://doi.org/10.1287/opre.1030.0065

    Article  Google Scholar 

  19. Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464– 501

    Article  Google Scholar 

  20. Blake J, Carter M (2002) A goal programming approach to strategic resource allocation in acute care hospitals. Eur J Oper Res 140(3):541–561. https://doi.org/10.1016/S0377-2217(01)00219-3

    Article  Google Scholar 

  21. Cardoen B, Demeulemeester E (2008) Capacity of clinical pathways: a strategic multi-level evaluation tools. J Med Syst 32(6):443–452. https://doi.org/10.1007/s10916-008-9150-z

    Article  Google Scholar 

  22. Cardoen B, Demeulemeester E, Beliën J (2009) Sequencing surgical cases in a day-care environment: an exact branch-and-price approach. Comput Oper Res 36(9):2660–2669. https://doi.org/10.1016/j.cor.2008.11.012

    Article  Google Scholar 

  23. Castro P, Marques I (2015) Operating room scheduling with generalized disjunctive programming. Comput Oper Res 64:262–273. https://doi.org/10.1016/j.cor.2015.06.002

    Article  Google Scholar 

  24. Chaabane S, Meskens N, Guinet A, Laurent M (2006) Comparison of two methods of operating theatre planning: Application in belgian hospital. In: 2006 International conference on service systems and service management. https://doi.org/10.1109/ICSSSM.2006.320645, vol 1, pp 386–392

  25. Choi S, Wilhelm W (2014a) An approach to optimize block surgical schedules. Eur J Oper Res 235(1):138–148. https://doi.org/10.1016/j.ejor.2013.10.040

    Article  Google Scholar 

  26. Choi S, Wilhelm W (2014b) On capacity allocation for operating rooms. Comput Oper Res 44:174–184. https://doi.org/10.1016/j.cor.2013.11.007

    Article  Google Scholar 

  27. Conforti D, Guerriero F, Guido R (2010) A multi-objective block scheduling model for the management of surgical operating rooms: New solution approaches via genetic algorithms. In: 2010 IEEE workshop on health care management (WHCM), pp 1–5 https://doi.org/10.1109/WHCM.2010.5441264

  28. Creemers S, Beliën J, Lambrecht M (2012) The optimal allocation of server time slots over different classes of patients. Eur J Oper Res 219(3):508–521. https://doi.org/10.1016/j.ejor.2011.10.045

    Article  Google Scholar 

  29. Day R, Garfinkel R, Thompson S, Day R, Garfinkel R, Thompson S (2012) Integrated block sharing: a win-win strategy for hospitals and surgeon. Manuf Serv Oper Manage 14:567–583. https://doi.org/10.1287/msom.1110.0372

    Article  Google Scholar 

  30. Denton B, Gupta D (2003) A sequential bounding approach for optimal appointment scheduling. IIE Trans 35(11):1003–1016. https://doi.org/10.1080/07408170304395

    Article  Google Scholar 

  31. Denton B, Viapiano J, Vogl A (2007) Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Manag Sci 10(1):13–24. https://doi.org/10.1007/s10729-006-9005-4

    Article  Google Scholar 

  32. Dexter F, Ledolter J (2005) Bayesian prediction bounds and comparisons of operating room times even for procedures with few or no historic data. Anesthesiology 103(2005):1259–1267. https://doi.org/10.1097/00000542-200512000-00023

    Article  Google Scholar 

  33. Dexter F, Traub R, Macario A (2003) How to release allocated operating room time to increase efficiency: predicting which surgical service will have the most underutilized operating room time. Anesth Analg 96(2):507–512. https://doi.org/10.1097/00000539-200302000-00038

    Article  Google Scholar 

  34. Dios M, Molina-Pariente J, Fernandez-Viagas V, Andrade-Pineda J, Framinan J (2015) A decision support system for operating room scheduling. Comput Ind Eng 88:430–443. https://doi.org/10.1016/j.cie.2015.08.001

    Article  Google Scholar 

  35. Durán G, Rey P, Wolff P (2017) Solving the operating room scheduling problem with prioritized lists of patients. Ann Oper Res 258(2):395–414. https://doi.org/10.1007/s10479-016-2172-x

    Article  Google Scholar 

  36. El Ghaoui L, Oustry F, Lebret H (1998) Robust solutions to uncertain semidefinite programs. SIAM J Optim 9(1):33–52. https://doi.org/10.1137/S1052623496305717

    Article  Google Scholar 

  37. Erdogan SA, Denton B (2013) Dynamic appointment scheduling of a stochastic server with uncertain demand. INFORMS J Comput 25(1):116–132. https://doi.org/10.1287/ijoc.1110.0482

    Article  Google Scholar 

  38. Fei H, Chu C, Meskens N (2009) Solving a tactical operating room planning problem by a column generation-based heuristic procedure with four criteria. Ann Oper Res 166(1):91–108. https://doi.org/10.1007/s10479-008-0413-3

    Article  Google Scholar 

  39. Fei H, Meskens N, Chu C (2010) A planning and scheduling problem for an operating theatre using an open scheduling strategy. Comput Ind Eng 58(2):221–230. https://doi.org/10.1016/j.cie.2009.02.012

    Article  Google Scholar 

  40. Fügener A, Schiffels S, Kolisch R (2017) Overutilization and underutilization of operating rooms: insights from behavioral health care operations management. Health Care Manag Sci 20(1):115–128. https://doi.org/10.1007/s10729-015-9343-1

    Article  Google Scholar 

  41. Gabrel V, Murat C (2009) Robustness and duality in linear programming. J Oper Res Soc 61(8):1288–1296

    Article  Google Scholar 

  42. Gabrel V, Murat C, Remli N (2010) Linear programming with interval right hand sides. Int Trans Oper Res 17(3):397–408. https://doi.org/10.1111/j.1475-3995.2009.00737.x

    Article  Google Scholar 

  43. Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: An overview. Eur J Oper Res 235(3):471–483. https://doi.org/10.1016/j.ejor.2013.09.036

    Article  Google Scholar 

  44. Wan GGD, Wang Z, Zhang J (2014) A note on appointment scheduling with piecewise linear cost functions. Math Oper Res 39(4):1244–1251. https://doi.org/10.1287/moor.2013.0631

    Article  Google Scholar 

  45. Guerriero F, Guido R (2011) Operational research in the management of the operating theatre: a survey. Health Care Manag Sci 14(1):89–114

    Article  Google Scholar 

  46. Guido R, Conforti D (2017) A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput Oper Res 87:270–282. https://doi.org/10.1016/j.cor.2016.11.009

    Article  Google Scholar 

  47. Guinet A, Chaabane S (2003) Operating theatre planning. Int J Prod Econ 85(1):69–81. https://doi.org/10.1016/S0925-5273(03)00087-2

    Article  Google Scholar 

  48. Gupta D, Denton B (2008) Appointment scheduling in health care: Challenges and opportunities. IIE Trans 40(9):800–819. https://doi.org/10.1080/07408170802165880

    Article  Google Scholar 

  49. Hsu V, De Matta R, CY L (2003) Scheduling patients in an ambulatory surgical center. Nav Res Logist 50(3):218–238. https://doi.org/10.1002/nav.10060

    Article  Google Scholar 

  50. Huang W, Chen P, Liu J, Chen Y, Chen Y (2018) Dynamic configuration scheduling problem for stochastic medical resources. J Biomed Inf 80:96–105. https://doi.org/10.1016/j.jbi.2018.03.005

    Article  Google Scholar 

  51. Hulshof P, Kortbeek N, Boucherie R, Hans E, Bakker P (2012) Taxonomic classification of planning decisions in health care: a structured review of the state of the art in or/ms. Health Syst 1(2):129–175. https://doi.org/10.1057/hs.2012.18

    Article  Google Scholar 

  52. Jebali A, Hadj Alouane A, Ladet P (2006) Operating rooms scheduling. Int J Prod Econ 99(1-2):52–62. https://doi.org/10.1016/j.ijpe.2004.12.006

    Article  Google Scholar 

  53. Joustra P, de Wit J, Van Dijk N, Bakker P (2011) How to juggle priorities? an interactive tool to provide quantitative support for strategic patient-mix decisions: an ophthalmology case. Health Care Manag Sci 14(4):348–360. https://doi.org/10.1007/s10729-011-9168-5

    Article  Google Scholar 

  54. Kharraja S, Albert P, Chaabane S (2006) Block scheduling: Toward a master surgical schedule. In: 2006 International conference on service systems and service management. https://doi.org/10.1109/ICSSSM.2006.320501, vol 1, pp 429–435

  55. Kim H, Ao S, Amouzegar M (2013) Operating room scheduling problems: a survey and a proposed solution framework. Trans Eng Technol Spec Issue World Congr Eng Comput Sci 4(1):1–781

    Google Scholar 

  56. Koppka L, Wiesche L, Schacht M, Werners B (2018) Optimal distribution of operating hours over operating rooms using probabilities. Eur J Oper Res 267 (3):1156–1171. https://doi.org/10.1016/j.ejor.2017.12.025

    Article  Google Scholar 

  57. Kroer L, Foverskov K, Vilhelmsen C, Hansen A, J L (2018) Planning and scheduling operating rooms for elective and emergency surgeries with uncertain duration. Oper Res Health Care 19:107–119. https://doi.org/10.1016/J.ORHC.2018.03.006

    Article  Google Scholar 

  58. Kumar A, Costa A, Fackrell M, Taylor P (2018) A sequential stochastic mixed integer programming model for tactical master surgery scheduling. Eur J Oper Res 270 (2):734–746. https://doi.org/10.1016/j.ejor.2018.04.007

    Article  Google Scholar 

  59. Lamiri M, Xie X, Dolgui A, Grimaud F (2008a) A stochastic model for operating room planning with elective and emergency demand for surgery. Eur J Oper Res 185(3):1026–1037. https://doi.org/10.1016/j.ejor.2006.02.057

    Article  Google Scholar 

  60. Lamiri M, Xie X, Zhang S (2008b) Column generation approach to operating theater planning with elective and emergency patients, vol 40. https://doi.org/10.1080/07408170802165831

  61. Lehtonen J, Torkki P, Peltokorpi A, Moilanen T (2013) Increasing operating room productivity by duration categories and a newsvendor model. Int J Health Care Qual Assur 26(4):80–92. https://doi.org/10.1108/09526861311297307

    Article  Google Scholar 

  62. Liang F, Guo Y, Fung R (2015) Simulation-based optimization for surgery scheduling in operation theatre management using response surface method. J Med Syst 39(11):159. https://doi.org/10.1007/s10916-015-0349-5

    Article  Google Scholar 

  63. Ma G, Demeulemeester E (2013) A multilevel integrative approach to hospital case mix and capacity planning. Comput Oper Res 40(9):2198–2207. https://doi.org/10.1016/j.cor.2012.01.013

    Article  Google Scholar 

  64. Ma G, Beliën J, Demeulemeester E, Wang L (2009) Solving the strategic case mix problem optimally by using branch-and-price algorithms. Health services management

  65. Makboul S, Kharraja S, Abbassi A, El Hilali Alaoui A (2020) A multi-objective approach for the combined master surgical schedule and surgical case assignment problems. In: 13éme CONFERENCE INTERNATIONALE DE MODELISATION, OPTIMISATION ET SIMULATION (MOSIM2020). https://hal.archives-ouvertes.fr/hal-03193204

  66. Mancilla C, Storer R (2012) A sample average approximation approach to stochastic appointment sequencing and scheduling. IIE Trans 44(8):655–670. https://doi.org/10.1080/0740817X.2011.635174

    Article  Google Scholar 

  67. Marques I, Captivo M (2015) Bicriteria elective surgery scheduling using an evolutionary algorithm. Oper Res Health Care 7:14–26. https://doi.org/10.1016/j.orhc.2015.07.004

    Article  Google Scholar 

  68. Marques I, Captivo M, Barros N (2019) Optimizing the master surgery schedule in a private hospital. Oper Res Health Care 23:11–24. https://doi.org/10.1016/j.orhc.2018.11.002

    Article  Google Scholar 

  69. Matta A, Li J, Sahin E, Lanzarone E, Fowler J (2014) Proceedings of the international conference on health care systems engineering, springer proceedings in mathematics and statistics, springer international publishing

  70. May J, Strum D, Vargas L (2000) Fitting the lognormal distribution to surgical procedure times. Decis Sci 31(1):129–148. https://doi.org/10.1111/j.1540-5915.2000.tb00927.x

    Article  Google Scholar 

  71. Meskens N, Duvivier D, Hanset A (2013) Multi-objective operating room scheduling considering desiderata of the surgical team. Decis Support Syst 55(2):650–659. https://doi.org/10.1016/j.dss.2012.10.019

    Article  Google Scholar 

  72. M’Hallah R, Al-Roomi A (2014) The planning and scheduling of operating rooms: a simulation approach. Comput Ind Eng 78:235–248. https://doi.org/10.1016/j.cie.2014.07.022

    Article  Google Scholar 

  73. M’Hallah R, Visintin F (2019) A stochastic model for scheduling elective surgeries in a cyclic master surgical schedule. Comput Ind Eng 129:156–168. https://doi.org/10.1016/j.cie.2019.01.030

    Article  Google Scholar 

  74. Min D, Yih Y (2010) Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur J Oper Res 206(3):642–652. https://doi.org/10.1016/j.ejor.2010.03.014

    Article  Google Scholar 

  75. Molina-Pariente J, Hans E, Framinan J, Gomez-Cia T (2015) New heuristics for planning operating rooms. Comput Ind Eng 90:429–443. https://doi.org/10.1016/j.cie.2015.10.002

    Article  Google Scholar 

  76. Mulvey J, Vanderbei R, Stavros A (1995) Robust optimization of large-scale systems. Oper Res 43(2):199–374. https://doi.org/10.1287/opre.43.2.264

    Article  Google Scholar 

  77. Neyshabouri S, Berg B (2017) Two-stage robust optimization approach to elective surgery and downstream capacity planning. Eur J Oper Res 260(1):21–40. https://doi.org/10.1016/j.ejor.2016.11.043

    Article  Google Scholar 

  78. Ozkarahan I (1995) Allocation of surgical procedures to operating rooms. J Med Syst 19 (4):333–352. https://doi.org/10.1007/BF02257264

    Article  Google Scholar 

  79. Palma C, Nelson J (2009) A robust optimization approach protected harvest scheduling decisions against uncertainty. Can J Forest Res 39(2):342–355

    Article  Google Scholar 

  80. Penn M, Potts C, Harper P (2017) Multiple criteria mixed-integer programming for incorporating multiple factors into the development of master operating theater timetables. Eur J Oper Res 262(1):194–206. https://doi.org/10.1016/j.ejor.2017.03.065

    Article  Google Scholar 

  81. Rachuba S, Werners B (2017) fuzzy multi-criteria approach for robust operating room scheduless. Ann Oper Res 251(1-2):325–350. https://doi.org/10.1007/s10479-015-1926-1

    Article  Google Scholar 

  82. Rath S, Rajaram K, Mahajan A (2017) Integrated anesthesiologist and room scheduling for surgeries: methodology and application. Oper Res 65(6):1460–1478. https://doi.org/10.1287/opre.2017.1634

    Article  Google Scholar 

  83. Remli N (2010) Robustness in linear programming, PhD thesis, Paris Dauphine University

  84. Riise A, Mannino C, Burke E (2016) Modelling and solving generalised operational surgery scheduling problems. Comput Oper Res 66:1–11. https://doi.org/10.1016/j.cor.2015.07.003

    Article  Google Scholar 

  85. Roland B, Di Martinelly C, Riane F (2006) Operating theatre optimization : A resource-constrained based solving approach. In: 2006 International conference on service systems and service management. https://doi.org/10.1109/ICSSSM.2006.320503, vol 1, pp 443–448

  86. Roland B, Di Martinelly C, Riane F, Pochet Y (2010) Scheduling an operating theatre under human resource constraints. Comput Ind Eng 58(2):212–220. https://doi.org/10.1016/j.cie.2009.01.005

    Article  Google Scholar 

  87. Roshanaei V, Luong C, Aleman D, Urbach D (2017) Collaborative operating room planning and scheduling. Informs J Comput 29(3):558–580. https://doi.org/10.1287/ijoc.2017.0745

    Article  Google Scholar 

  88. Saadouli H, Jerbi B, Dammak A, L M, Bouaziz A (2015) A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department. Comput Ind Eng 80:72–79. https://doi.org/10.1016/j.cie.2014.11.021

    Article  Google Scholar 

  89. Schneider T, van Essen T, Carlier M, Hans E (2020) Scheduling surgery groups considering multiple downstream resources. Eur J Oper Res 282(2):741–752. https://doi.org/10.1016/j.ejor.2019.09.029

    Article  Google Scholar 

  90. Shehadeh K, Padman R (2020) A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity. Eur J Oper Res 290(3):901–913. https://doi.org/10.1016/j.ejor.2020.09.001

    Article  Google Scholar 

  91. Shehadeh K, Cohn A, Epelman M (2019) Analysis of models for the stochastic outpatient procedure scheduling problem. Eur J Oper Res 279(3):721–731. https://doi.org/10.1016/j.ejor.2019.06.023

    Article  Google Scholar 

  92. Silva T, De Souza M, Saldanha R, Burke E (2015) Surgical scheduling with simultaneous employment of special-ized human resources. Eur J Oper Res 245(3):719–730. https://doi.org/10.1016/j.ejor.2015.04.008

    Article  Google Scholar 

  93. Soyter A (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21(5):1154–1157. https://doi.org/10.1287/opre.21.5.1154

    Article  Google Scholar 

  94. Strum D, May J, Vargas L (2000) Modeling the uncertainty of surgical procedure times: comparison of log-normal and normal models. Anesthesiology 92(4):1160–7. https://doi.org/10.1097/00000542-200004000-00035

    Article  Google Scholar 

  95. Sun Y, Raghavan U, Vaze V et al (2021) Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation. Health Care Manag Sci https://doi.org/10.1007/s10729-020-09527-z

  96. Testi A, Tànfani E (2009) Tactical and operational decisions for operating room planning: efficiency and welfare implications. Health Care Manag Sci 12(4):363–373. https://doi.org/10.1007/s10729-008-9093-4

    Article  Google Scholar 

  97. Testi A, Tànfani E, Torre G (2007) A three-phase approach for operating theatre schedules. Health Care Manag Sci 10(2):163–172. https://doi.org/10.1007/s10729-007-9011-1

    Article  Google Scholar 

  98. DiNapol TP (2012) New York City health and hospitals corporation management and control of overtime costs. https://web.osc.state.ny.us/audits/allaudits/093012/09n15.pdf, accessed 06 February 2021

  99. Tohid M, Masoumeh KZ, Contreras I (2020) A physician planning framework for polyclinics under uncertainty. Omega p 102275. https://doi.org/10.1016/j.omega.2020.102275

  100. Van Oostrum J, Van Houdenhoven M, Hurink J, Hans E, Wullink G, Kazemier G (2008) A master surgical scheduling approach for cyclic scheduling in operating room departments. OR Spectr 30(2):355–374. https://doi.org/10.1007/s00291-006-0068-x

    Article  Google Scholar 

  101. Vancroonenburg W, Smet P, Vanden Berghe G (2015) A two-phase heuristic approach to multi-day surgical case scheduling considering generalized resource constraints. Oper Res Health Care 7:27–39. https://doi.org/10.1016/j.orhc.2015.09.010

    Article  Google Scholar 

  102. Vijayakumar B, Parikh P, Scott R, Barnes A, Gallimore J (2013) A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital. Eur J Oper Res 224(3):583–591. https://doi.org/10.1016/j.ejor.2012.09.010

    Article  Google Scholar 

  103. Wachtel R, Dexter F (2008) Tactical increases in operating room block time for capacity planning should not be based on utilization. Anesth Analg 106(1):215–226

    Article  Google Scholar 

  104. Xiang W, Yin J, Lim G (2015) An ant colony optimization approach for solving an operating room surgery scheduling problem. Comput Oper Res 85:335–345

    Google Scholar 

  105. Zhang J, Dridi M, El Moudni A (2019) A two-level optimization model for elective surgery scheduling with downstream capacity constraints. Eur J Oper Res 276 (2):602–613. https://doi.org/10.1016/j.ejor.2019.01.036

    Article  Google Scholar 

  106. Zhu S, Fan W, Yang S, et al. (2019) Operating room planning and surgical case scheduling: a review of literature. J Comb Optim 37:757–805. https://doi.org/10.1007/s10878-018-0322-6

    Article  Google Scholar 

  107. Zhu Z (2011) A two-stage scheduling approach of operation rooms considering uncertain operation time. In: International conference on information science and technology, pp 1225–1228 https://doi.org/10.1109/ICIST.2011.5765192

Download references

Acknowledgements

The authors gratefully acknowledge the insightful comments received from the editor-in-chief, the associate editor, and two anonymous referees, which have considerably improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Makboul.

Ethics declarations

Ethics approval

No ethics approval was required for this study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Overview of the robust optimization approach by [18]

Appendix: Overview of the robust optimization approach by [18]

We consider the linear programming problem:

$$ \max \sum\limits_{j=1}^{n} c_{j}x_{j} $$
(57)

subject to:

$$ \sum\limits_{j=1}^{n} a_{ij}x_{j}\leq b_{i} \qquad \forall i $$
(58)
$$ x_{j} \geq 0 \qquad \forall j $$
(59)

The variable xj, the cost cj, indexes and the dual variables defined in this section are independent.

We consider \(J^{\prime }_{i}\) the set of coefficient aij that are subject to uncertainty. The coefficients aij belongs to a symmetric range \([\overline {a}_{ij}-\widehat {a}_{ij},\overline {a}_{ij}+\widehat {a}_{ij}]\), where \(\overline {a}_{ij}\) is the nominal value and \(\widehat {a}_{ij}\geq 0\) its deviation. A random variable of deviation can be introduced as \(\tau _{ij}=(a_{ij}-\overline {a}_{ij})/\widehat {a}_{ij}\), τij takes values in [− 1, 1]. The decisions variables are assumed to be nonnegative. Hence, the worst case will be achieved at the right-hand side of the range \([\overline {a}_{ij}-\widehat {a}_{ij},\overline {a}_{ij}+\widehat {a}_{ij}]\). Therefore, the random variable τ is assumed to be positive (0 ≤ τi ≤ 1). The confidence range \([\overline {a}_{ij}-\widehat {a}_{ij},\overline {a}_{ij}+\widehat {a}_{ij}]\) does not have to be symmetric. For every i a parameter ∇i is introduced. This parameter is the sum of the total deviations of the nominal values of the uncertain coefficients in the same constraint i. This parameter is called “the budget of robustness”; its role is to protect the constraint against uncertainty and to adjust the robustness of the method against the degree of conservatism. This parameter is not necessarily an integer but takes values in \([0,card(J^{\prime }_{i})]\); if the parameter is zero no deviation is allowed on the coefficients of the ith constraint and this case is the deterministic case, whereas, if ∇i is equal to \(card(J^{\prime }_{i})\) all the parameters are likely to deviate and this case is the one considered in [93].

We consider the following nonlinear formulation of constraint Eq. 58:

$$ \sum\limits_{j=1}^{n} \overline{a}_{ij} x_{ij}+\beta_{i}(x^{*},\nabla_{i}) \leq b_{i} \qquad \forall i $$
(60)

where:

$$ \begin{array}{@{}rcl@{}} \beta_{i}(x^{*},\nabla_{i})=\underset{\{S^{\prime}_{i}\cup \{t_{i}\}|S^{\prime}_{i}\subseteq J^{\prime}_{i}, card(S^{\prime}_{i})=\left\lfloor\nabla_{i}\right\rfloor, t_{i}\in J^{\prime}_{i}\setminus S^{\prime}_{i}\}}{\max} \left\{{\sum\limits_{j\in S^{\prime}_{i}}\widehat{a}_{ij} x_{j}^{*}+(\nabla_{i}-\left\lfloor\nabla_{i}\right\rfloor)\widehat{a}_{it_{i}} x_{j}^{*}}\right\} \end{array} $$
(61)

The formulation Eq. 61 is the protection function of constraint i. The protection function protects the left-side of the inequality to be lower than bi for different values of aij; the protection function is defined for every constraint with uncertain coefficient. It is an optimization problem in itself; it depends on the protection level ∇i; when ∇i = 0, then βi = 0 and the problem is deterministic [79].

In the following formulation, the protection function is transformed into an optimization problem; the formulation Eq. 61 can be replaced by the following linear problem:

$$ \max \sum\limits_{j \in J^{\prime}_{i} }\widehat{a}_{ij}x_{j}^{*}w_{ij} $$
(62)

subject to:

$$ \sum\limits_{j \in J^{\prime}_{i}} w_{ij}\leq \nabla_{i} $$
(63)
$$ 0 \leq w_{ij} \leq 1 \qquad \forall j\in J^{\prime}_{i} $$
(64)

\(x_{j}^{*}\) is not variable in the problem, wij is the new variable corresponding to τij described below, to prove the equivalence of problems Eq. 61 and Eqs. 62-64, the optimal solution value of problem Eqs. 62-64 consists of \(\left \lfloor \nabla _{i}\right \rfloor \) variables at 1 and one variable at \(\nabla _{i}-\left \lfloor \nabla _{i}\right \rfloor \), it is equivalent to selecting a subset : \({\{S^{\prime }_{i}\cup \{t_{i}\}|S^{\prime }_{i}\subseteq J^{\prime }_{i}, t_{i}\in J^{\prime }_{i}\setminus S^{\prime }_{i}, card(S^{\prime }_{i})=\left \lfloor \nabla _{i}\right \rfloor }\}\) with the corresponding objective value \({\sum }_{j\in S^{\prime }_{i}}\widehat {a}_{ij} x_{j}^{*}+(\nabla _{i}-\left \lfloor \nabla _{i}\right \rfloor )\) \(\widehat {a}_{it_{i}} {x}_{j}^{*}\) [18].

The model Eqs. 62-64 is nonlinear when x is considered as variable, nonetheless, by using its duality, it can be linearly expressed. By strong duality, since problem Eq. 62-64 is feasible and bounded for all ∇i, then the duality is also feasible and bounded:

$$ \min \nabla_{i}z_{i}+\sum\limits_{j \in J^{\prime}_{i}} p_{ij} $$
(65)

subject to:

$$ z_{i}+p_{ij}\geq \widehat {a}_{ij}x_{j}^{*} \qquad \forall j \in J^{\prime}_{i} $$
(66)
$$ p_{ij} \geq 0 \qquad \forall j\in J^{\prime}_{i} $$
(67)
$$ z_{i} \geq 0 $$
(68)

Finally, we replace the protection function with the dual model Eqs. 65-68, then, the robust model is as follows:

$$ \max \sum\limits_{j=1}^{n}c_{j} x_{j} $$
(69)

subject to:

$$ \sum\limits_{j=1}^{n} \overline{a}_{ij} x_{j}+ z_{i}\nabla_{i}+\sum\limits_{j \in J^{\prime}_{i}} p_{ij} \leq b_{i} \qquad \forall i $$
(70)
$$ z_{i}+p_{ij} \geq \widehat{a}_{ij}x_{j} \qquad \forall i,j\in J^{\prime}_{i} $$
(71)
$$ x_{j} \geq 0 \qquad \forall j $$
(72)
$$ p_{ij} \geq 0 \qquad \forall i,j\in J^{\prime}_{i} $$
(73)
$$ z_{i} \geq 0 \qquad \forall i $$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makboul, S., Kharraja, S., Abbassi, A. et al. A two-stage robust optimization approach for the master surgical schedule problem under uncertainty considering downstream resources. Health Care Manag Sci 25, 63–88 (2022). https://doi.org/10.1007/s10729-021-09572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-021-09572-2

Keywords

Navigation