Skip to main content
Log in

Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching

  • Published:
Group Decision and Negotiation Aims and scope Submit manuscript

Abstract

In real-world decision problems, decision makers usually express their opinions with different preference structures. In order to deal with the heterogeneous preference information in group decision making, this paper presents an optimization-based consensus model for group decision making with heterogeneous preference structures (utility values, preference orderings, multiplicative preference relations and additive preference relations). This proposal seeks to minimize the information loss between decision makers’ heterogeneous preference information and individual preference vectors and also seeks the collective solution with a consensus. Meanwhile, in order to justify the consensus model, we discuss its internal aggregation operator between the obtained individual and group preference vectors, demonstrate that the proposed model satisfies the Pareto principle of social choice theory, and prove the uniqueness of the solution to the optimization model. Furthermore, based on the proposed optimization-based consensus model, we present an automatic mechanism to support consensus reaching in the group decision making with heterogeneous preference structures. In the consensus reaching process, the obtained individual and group preference vectors are considered as a decision aid which decision makers can use as a reference to adjust their preference opinions. Finally, detailed simulation experiments and comparison analysis are conducted to demonstrate the feasibility and effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altuzarra A, Moreno-Jiménez JM, Salvador M (2010) Consensus building in AHP-group decision making: a Bayesian approach. Oper Res 58(6):1755–1773

    Article  Google Scholar 

  • An LTH (2000) An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints. Math Program 87(3):401–426

    Article  Google Scholar 

  • Arrow KJ (1963) Social choice and individual values. Wiley, New York

    Google Scholar 

  • Ben-Arieh D, Easton T (2007) Multi-criteria group consensus under linear cost opinion elasticity. Decis Support Syst 43:713–721

    Article  Google Scholar 

  • Ben-Arieh D, Easton T, Evans B (2008) Minimum cost consensus with quadratic cost functions. IEEE Trans Syst Man Cybern Part A Syst Hum 39(1):210–217

    Article  Google Scholar 

  • Chen X, Zhang HJ, Dong YC (2015) The fusion process with heterogeneous preference structures in group decision making: a survey. Inf Fusion 24:72–83

    Article  Google Scholar 

  • Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on additive preference relations. Fuzzy Sets Syst 97:33–48

    Article  Google Scholar 

  • Chiclana F, Herrera F, Herrera-Viedma E (2001) Integrating multiplicative preference relations in a multipurpose decision-making model based on additive preference relations. Fuzzy Sets Syst 122:277–291

    Article  Google Scholar 

  • Contreras I (2010) A distance-based consensus model with flexible choice of rank-position weights. Group Decis Negot 19(5):441–456

    Article  Google Scholar 

  • Cook WD (2006) Distance-based and ad hoc consensus models in ordinal preference ranking. Eur J Oper Res 172(2):369–385

    Article  Google Scholar 

  • Cook WD, Seiford LM (1978) Priority ranking and consensus formation. Manag Sci 24(24):1721–1732

    Article  Google Scholar 

  • Dong YC, Zhang HJ (2014) Multiperson decision making with different preference representation structures: a direct consensus framework and its properties. Knowl Based Syst 58:45–57

    Article  Google Scholar 

  • Dong YC, Xu YF, Li HY, Feng B (2010) The OWA-based consensus operator under linguistic representation models using position indexes. Eur J Oper Res 203:455–463

    Article  Google Scholar 

  • Dong YC, Li CC, Xu YF, Gu X (2015) Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decis Negot 24:217–242

    Article  Google Scholar 

  • Dong YC, Zhang HJ, Herrera-Viedma E (2016) Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors. Decis Support Syst 84:1–15

    Article  Google Scholar 

  • Dong YC, Zha QB, Zhang HJ, Kou G, Fujita H, Chiclana F, Herrera-Viedma E (2018) Consensus reaching in social network group decision making: research paradigms and challenges. Knowl Based Syst 162:3–13

    Article  Google Scholar 

  • Fan ZP, Zhang Y (2010) A goal programming approach to group decision-making with three formats of incomplete preference relations. Soft Comput 14(10):1083–1090

    Article  Google Scholar 

  • Fan ZP, Xiao SH, Hu GF (2004) An optimization method for integrating two kinds of preference information in group decision-making. Comput Ind Eng 46:329–335

    Article  Google Scholar 

  • Fan ZP, Ma J, Jiang YP, Sun YH, Ma L (2006) A goal programming approach to group decision making based on multiplicative preference relations and additive preference relations. Eur J Oper Res 174:311–321

    Article  Google Scholar 

  • Gong ZW, Zhang HH, Forrest J, Li LS, Xu XX (2015) Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual. Eur J Oper Res 240:183–192

    Article  Google Scholar 

  • Gong ZW, Xu C, Chiclana F, Xu XX (2016) Consensus measure with multi-stage fluctuation utility based on china’s urban demolition negotiation. Group Decis Negot 26(2):1–29

    Google Scholar 

  • Herrera F, Martínez L, Sánchez PJ (2005) Managing non-homogeneous information in group decision making. Eur J Oper Res 166(1):115–132

    Article  Google Scholar 

  • Herrera-Viedma E, Herrera F, Chiclana F (2002) A consensus model for multiperson decision making with different preference structures. IEEE Trans Syst Man Cybern Part A Syst Hum 32:394–402

    Article  Google Scholar 

  • Herrera-Viedma E, Martínez L, Mata F, Chiclana F (2005) A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Trans Fuzzy Syst 13:644–658

    Article  Google Scholar 

  • Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fusion 17:4–13

    Article  Google Scholar 

  • Jiang YP, Fan ZP, Ma J (2008) A method for group decision making with multi-granularity linguistic assessment information. Inf Sci 178(4):1098–1109

    Article  Google Scholar 

  • Kacprzyk J, Fedrizzi M (1988) A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. Eur J Oper Res 343:16–325

    Google Scholar 

  • Kacprzyk J, Zadrozny S (2010) Soft computing and Web intelligence for supporting consensus reaching. Soft Comput 14:833–846

    Article  Google Scholar 

  • Kacprzyk J, Fedrizzi M, Nurmi H (1992) Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst 49:21–31

    Article  Google Scholar 

  • Kacprzyk J, Fedrizzi M, Nurmi H (1997) Consensus under fuzziness. Kluwer, Norwell

    Book  Google Scholar 

  • Kim J (2008) A model and case for supporting participatory public decision making in edemocracy. Group Decis Negot 17:179–193

    Article  Google Scholar 

  • Kozierkiewicz-Hetmanska A (2017) The analysis of expert opinions’ consensus quality. Inf Fusion 34:80–86

    Article  Google Scholar 

  • Li CC, Dong YC, Herrera F (2018) A consensus model for large-scale linguistic group decision making with a feedback recommendation based on clustered personalized individual semantics and opposing consensus groups. IEEE Trans Fuzzy Syst 1:25. https://doi.org/10.1109/tfuzz.2018.2857720

    Article  Google Scholar 

  • Liu YT, Dong YC, Liang HM, Chiclana F, Herrera-Viedma E (2018) Multiple attribute strategic weight manipulation with minimum cost in a group decision making context with interval attribute weights information. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/tsmc.2018.2874942

    Article  Google Scholar 

  • Ma J, Fan ZP, Jiang YP, Mao JY (2006) An optimization approach to multiperson decision making based on different formats of preference information. IEEE Trans Syst Man Cybern Part A Syst Hum 36(5):876–889

    Article  Google Scholar 

  • María J, Jiménez M, Joven JA, Pirla AR, Lanuza AT (2005) A spreadsheet module for consistent consensus building in AHP-group decision making. Group Decis Negot 14(2):89–108

    Article  Google Scholar 

  • Moreno-Jiménez JM, Joven JA, Pirla AR, Lanuza AT (2005) A spreadsheet module for consistent consensus building in AHP group decision making. Group Decis Negot 14:89–108

    Article  Google Scholar 

  • Orlovsky SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1(3):155–167

    Article  Google Scholar 

  • Palomares I, Estrella FJ, Martínez L, Herrera F (2014) Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Inf Fusion 20:252–271

    Article  Google Scholar 

  • Parreiras RO, Ekel PY, Morais DC (2012) Fuzzy set based consensus schemes for multicriteria group decision making applied to strategic planning. Group Decis Negot 21:153–183

    Article  Google Scholar 

  • Pérez IJ, Cabrerizo FJ, Alonso S, Herrera-Viedma E (2014) A new consensus model for group decision making problems with non-homogeneous experts. IEEE Trans Syst Man Cybern Syst 44(4):494–498

    Article  Google Scholar 

  • Pérez IJ, Cabrerizo FJ, Alonso S, Dong YC, Chiclana F, Herrera-Viedma E (2018) On dynamic consensus processes in group decision making problems. Inf Sci 459:20–35

    Article  Google Scholar 

  • Perny P, Roy B (1992) The use of fuzzy outranking relations in preference modelling. Fuzzy Sets Syst 49(1):33–53

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Sen A (1970) Collective choice and social welfare. Holdenday, San Francisco

    Google Scholar 

  • Seo F, Sakawa M (1985) Fuzzy multiattribute utility analysis for collective choice. IEEE Trans Syst Man Cybern 15:45–53

    Article  Google Scholar 

  • Srdjevic B (2007) Linking analytic hierarchy process and social choice methods to support group decision-making in water management. Decis Support Syst 42:2261–2273

    Article  Google Scholar 

  • Sun BZ, Ma WM (2015) An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application. Omega 51:83–92

    Article  Google Scholar 

  • Tanino T (1990) On group decision making under fuzzy preferences. In: Kacprzyk J, Fedrizzi M (eds) Multiperson decision making using fuzzy sets and possibility theory. Kluwer, Dordrecht, pp 172–185

    Chapter  Google Scholar 

  • Wu J, Chiclana F (2014a) Visual information feedback mechanism and attitudinal prioritisation method for group decision making with triangular fuzzy complementary preference relations. Inf Sci 279:716–734

    Article  Google Scholar 

  • Wu J, Chiclana F (2014b) A risk attitudinal ranking method for interval-valued intuitionistic fuzzy numbers based on novel attitudinal expected score and accuracy functions. Appl Soft Comput 22(5):272–286

    Article  Google Scholar 

  • Wu ZB, Xu JP (2012) A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decis Support Syst 52:757–767

    Article  Google Scholar 

  • Xu JP, Wu ZB, Zhang Y (2014) A consensus based method for multi-criteria group decision making under uncertain linguistic setting. Group Decis Negot 23(1):127–148

    Article  Google Scholar 

  • Xu XH, Du ZJ, Chen XH (2015) Consensus model for multi-criteria large-group emergency decision making considering non-cooperative behaviors and minority opinions. Decis Support Syst 79:150–160

    Article  Google Scholar 

  • Zhang Z, Gao CH (2014) An approach to group decision making with heterogeneous incomplete uncertain preference relations. Comput Ind Eng 71:27–36

    Article  Google Scholar 

  • Zhang GQ, Dong YC, Xu YF, Li HY (2011) Minimum-cost consensus models under aggregation operators. IEEE Trans Syst Man Cybern Part A Syst Hum 41(6):1253–1261

    Article  Google Scholar 

  • Zhang BW, Dong YC, Xu YF (2014) Multiple attribute consensus rules with minimum adjustments to support consensus reaching. Knowl Based Syst 67:35–48

    Article  Google Scholar 

  • Zhang HJ, Dong YC, Chiclana F, Yu S (2018) Consensus efficiency in group decision making: a comprehensive comparative study and its optimal design. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2018.11.052

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of the grants (Nos. 71871149 and 71571124) from NSF of China, the grants (Nos. sksyl201705 and 2018hhs-58) from Sichuan University, and the grant TIN2016-75850-R supported by the Spanish Ministry of Economy and Competitiveness with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proofs

Proof of Theorem 2

Without loss of generality, let \( w_{i}^{k*} \) and \( \overline{{w_{i}^{c*} }} \) be the optimal solution to the MILCM. Then, we have that \( \hbox{min} \; \sum\nolimits_{k = 1}^{m} {\alpha_{k} \left( {w^{k} } \right)^{T} G^{k} w^{k} } = \sum\nolimits_{k = 1}^{m} {\alpha_{k} \left( {w^{k*} } \right)^{T} G^{k} w^{k*} } \) and \( \sqrt {\frac{1}{2m}\sum\nolimits_{k = 1}^{m} {\sum\nolimits_{i = 1}^{n} {\left( {w_{i}^{k*} - \overline{{w_{i}^{c*} }} } \right)^{2} } } } \le 1 - \varepsilon . \)

Let \( F\left( {w_{1}^{c} ,w_{2}^{c} , \ldots ,w_{n}^{c} } \right) = \sqrt {\frac{1}{2m}\sum\nolimits_{k = 1}^{m} {\sum\nolimits_{i = 1}^{n} {\left( {w_{i}^{k*} - w_{i}^{c} } \right)^{2} } } } \). We have that the minimum value of F is

$$ \hbox{min} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} F = F\left( {\frac{1}{m}\sum\limits_{k = 1}^{m} {w_{1}^{k*} } ,\frac{1}{m}\sum\limits_{k = 1}^{m} {w_{2}^{k*} } , \ldots ,\frac{1}{m}\sum\limits_{k = 1}^{m} {w_{n}^{k*} } } \right). $$

Then, the following can be obtained

$$ \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {w_{i}^{k*} - \frac{1}{m}\sum\limits_{k = 1}^{m} {w_{i}^{k*} } } \right)^{2} } } } \le \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {w_{i}^{k*} - \overline{{w_{i}^{c*s} }} } \right)^{2} } } } \le 1 - \varepsilon $$

Therefore, \( w_{i}^{k*} \) and \( w_{i}^{c*} = \frac{1}{m}\sum\nolimits_{k = 1}^{m} {w_{i}^{k*} } \) is the optimal solution to the MILCM. This completes the proof of Theorem 2.

Proof of Theorem 3

Without loss of generality, according to Theorem 2, let \( w_{i}^{c*} { = }\frac{1}{m}\sum\nolimits_{k = 1}^{m} {w_{i}^{k*} } \left( {i = 1,2, \ldots ,n} \right) \). Since \( w_{i}^{k*} \ge w_{j}^{k*} \) for \( k = 1,2, \ldots ,m \), we easily obtain that \( w_{i}^{c*} \ge w_{j}^{c*} \). This completes the proof of Theorem 3.

Proof of Lemma 1

Let \( \overline{{w_{i}^{k} }} \) and \( \overline{{w_{i}^{c} }} \) be the optimal solution to the MILCM. Based on Theorem 2, \( \overline{{w_{i}^{k} }} \) and \( w_{i}^{c} = \frac{1}{m}\sum\nolimits_{k = 1}^{m} {\overline{{w_{i}^{k} }} } \) are also the optimal solution to the MILCM.

Because \( w_{i}^{k*} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) is the optimal solution to P2, we have that

$$ \begin{aligned} \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {w_{i}^{k*} - \frac{1}{m}\sum\limits_{k = 1}^{m} {w_{i}^{k*} } } \right)^{2} } } } \le 1 - \varepsilon ; \hfill \\ \frac{1}{m}\sum\limits_{k = 1}^{m} {w_{1}^{k*} } + \frac{1}{m}\sum\limits_{k = 1}^{m} {w_{2}^{k*} } + , \ldots , + \frac{1}{m}\sum\limits_{k = 1}^{m} {w_{n}^{k*} } = \frac{1}{m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {w_{i}^{k*} } } = 1. \hfill \\ \end{aligned} $$

Thus, \( w_{i}^{k*} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) and \( w_{i}^{c*} = \frac{1}{m}\sum\nolimits_{k = 1}^{m} {w_{i}^{k*} } \left( {i = 1,2, \ldots ,n} \right) \) is a feasible solution to the MILCM. Then, the following can be obtained \( \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\overline{{w^{k} }} } \right)^{T} G^{k} \overline{{w^{k} }} } \le \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {w^{k*} } \right)^{T} G^{k} w^{k*} } \). Based on the proof of Theorem 2, we can obtain that \( \sqrt {\frac{1}{2m}\sum\nolimits_{k = 1}^{m} {\sum\nolimits_{i = 1}^{n} {\left( {\overline{{w_{i}^{k} }} - \frac{1}{m}\sum\limits_{k = 1}^{m} {\overline{{w_{i}^{k} }} } } \right)^{2} } } } \le \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {\overline{{w_{i}^{k} }} - \overline{{w_{i}^{c} }} } \right)^{2} } } } \le 1 - \varepsilon . \)

Thus, \( \overline{{w_{i}^{k} }} \left( {k = 1,2, \ldots ,m,i = 1,2, \ldots ,n} \right) \) is also a feasible solution to P2. Consequently, we can obtain that \( \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\overline{{w^{k} }} } \right)^{T} G^{k} \overline{{w^{k} }} } \ge \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {w^{k*} } \right)^{T} G^{k} w^{k*} } \). Thus, we have that \( \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {w^{k*} } \right)^{T} G^{k} w^{k*} } = \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\overline{{w^{k} }} } \right)^{T} G^{k} \overline{{w^{k} }} } \). Therefore, \( w_{i}^{k*} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) and \( w_{i}^{c*} = \frac{1}{m}\sum\nolimits_{k = 1}^{m} {w_{i}^{k*} } \left( {i = 1,2, \ldots ,n} \right) \) is the optimal solution to the MILCM, and \( w_{i}^{k*} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) is also the optimal solution to \( w_{i}^{k} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) in the MILCM.

Proof of Lemma 3

Let \( w = \left( {w^{1} ,w^{2} , \ldots ,w^{m} } \right)^{T} \). According to Theorem 1 and Eq. (7), we can obtain that

$$ \begin{aligned} & w^{T} H\left( w \right)w = w^{T} \nabla^{2} f{\kern 1pt} w = 2w^{T} G{\kern 1pt} w = 2f \\ & \quad = 2\sum\limits_{k = 1}^{{m_{1} }} {\alpha_{k} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {w_{i}^{k} u_{j}^{k} - w_{j}^{k} u_{i}^{k} } \right)^{2} } } } + 2\sum\limits_{{k = m_{1} + 1}}^{{m_{2} }} {\alpha_{k} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {w_{i}^{k} \left( {n - o_{j}^{k} } \right) - w_{j}^{k} \left( {n - o_{i}^{k} } \right)} \right)^{2} } } } \\ & \quad \quad + 2\sum\limits_{{k = m_{2} + 1}}^{{m_{3} }} {\alpha_{k} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {w_{i}^{k} - w_{j}^{k} a_{ij}^{k} } \right)^{2} } } } + 2\sum\limits_{{k = m_{3} + 1}}^{m} {\alpha_{k} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\left( {w_{i}^{k} - \left( {w_{i}^{k} + w_{j}^{k} } \right)p_{ij}^{k} } \right)^{2} } } } \\ \end{aligned} $$

where H is the Hessian matrix of the objective function.

Because for any i, j and k, there exists at least one of the inequalities \( w_{i}^{k} u_{j}^{k} \ne w_{j}^{k} u_{i}^{k} ,k \in \left[ {1,m_{1} } \right] \), \( w_{i}^{k} \left( {n - o_{j}^{k} } \right) \ne w_{i}^{k} ,k \in \left[ {m_{1} + 1,m_{2} } \right] \), \( w_{i}^{k} \ne w_{j}^{k} a_{ij}^{k} ,k \in \left[ {m_{2} + 1,m_{3} } \right] \) and \( w_{i}^{k} \ne \left( {w_{i}^{k} + w_{j}^{k} } \right)p_{ij}^{k} ,k \in \left[ {m_{3} + 1,m} \right] \), we can obtain that \( w^{T} H\left( w \right)w > 0 \). Thus, the objective function of P2 is a strictly convex function in the feasible region. Thus, this completes the proof of Lemma 3.

Proof of Theorem 4

Since \( \varepsilon \in \left[ {0,1} \right] \), let \( w_{i}^{1} = w_{i}^{2} = \cdots = w_{i}^{m} \left( {i = 1,2, \ldots ,n} \right) \), \( \sum\nolimits_{i = 1}^{n} {w_{i}^{k} } = 1 \) and \( w_{i}^{k} \ge 0 \). Then, \( \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {w_{i}^{k} - \frac{1}{m}\sum\limits_{k = 1}^{m} {w_{i}^{k} } } \right)^{2} } } } = 0 \le 1 - \varepsilon \). Thus, \( w_{i}^{k} \left( {k = 1,2, \ldots ,m,i = 1,2, \ldots ,n} \right) \) is a feasible solution to P2.

Let \( \varOmega \) be the feasible region of P2. Based on Lemmas 2 and 3, the feasible region of P2 is a closed convex set and the objective function of P2 is a strictly convex function in the feasible region. Thus, there exists an optimal solution to P2 in the feasible region. Without loss of generality, let \( \overline{{w_{i}^{k} }} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) be the optimal solution to P2, and let \( \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\overline{{w^{k} }} } \right)^{T} G^{k} \overline{{w^{k} }} } = f^{*} \). Then, we can obtain that \( \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {w^{k} } \right)^{T} G^{k} w^{k} } \ge f^{*} \). Suppose \( \overline{\overline{{w_{i}^{k} }}} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) is also the optimal solution to P2. We can obtain that \( \sum\limits_{k = 1}^{m} {\alpha_{k} {\kern 1pt} \left( {\overline{\overline{{w^{k} }}} } \right)^{T} G^{k} \overline{\overline{{w^{k} }}} } = f^{*} \). Let \( \underline{{w_{i}^{k} }} = \alpha \overline{{w_{i}^{k} }} + \left( {1 - \alpha } \right)\overline{\overline{{w_{i}^{k} }}} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right),\alpha \in \left( {0,1} \right) \). Because the feasible region of P2 is a closed convex set, we have that \( \underline{{w_{i}^{k} }} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \in\Omega \).

Because the objective function of P2 is a strictly convex function in the feasible region, the following can be obtained \( \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\underline{{w^{k} }} } \right)^{T} G^{k} \underline{{w^{k} }} } < \alpha \sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\overline{{w^{k} }} } \right)^{T} G^{k} \overline{{w^{k} }} } + \left( {1 - \alpha } \right)\sum\nolimits_{k = 1}^{m} {\alpha_{k} \, \left( {\overline{\overline{{w^{k} }}} } \right)^{T} G^{k} \overline{\overline{{w^{k} }}} } = f^{*} \). This contradicts the fact that \( f^{*} \) is the minimum value in Ω. Thus, \( \overline{{w_{i}^{k} }} \left( {k = 1,2, \ldots ,m;i = 1,2, \ldots ,n} \right) \) is the unique optimal solution to P2 in \( \varOmega \). This completes the proof of Theorem 4.

Appendix B: OBM Presented by Fan et al. (2004) and Ma et al. (2006)

The OBM has been proposed in Fan et al. (2004) and Ma et al. (2006). The basic notations in the OBM are as follows. Let \( G^{k} { = }\left( {g_{ij}^{k} } \right)_{n \times n} ,k = 1,2, \ldots ,m \), where \( g_{ij}^{k} \) is calculated according to Eqs. (1118). Let \( G = \sum\nolimits_{k = 1}^{m} {\alpha_{k} G^{k} } \), where \( \alpha_{k} \) is calculated according to Eq. (19). Let \( e = \left( {1,1, \ldots ,1} \right)^{T} \). Let \( w^{k} = \left( {w_{1}^{k} ,w_{2}^{k} , \ldots ,w_{n}^{k} } \right)^{T} \) be the individual preference vector of \( e_{k} \). Let \( w^{c} = \left( {w_{1}^{c} ,w_{2}^{c} , \ldots ,w_{n}^{c} } \right)^{T} \) be the group preference vector.

The OBM seeks to find the group preference vector based on Model (A1):

$$ \left\{ \begin{array}{l} \hbox{min} \, \left( {w^{c} } \right)^{T} Gw^{c} \hfill \\ s.t.\left\{ \begin{array}{l} e^{T} w^{c} = 1 \hfill \\ w^{c} \ge 0 \hfill \\ \end{array} \right. \hfill \\ \end{array} \right. $$
(A1)

where the group preference vector \( w^{c} \) is the decision variables in Mode (A1).

According to Eqs. (1119), the objective function of Model (A1) is to minimize the information loss between decision makers’ heterogeneous preference information and group preference vectors. Ma et al. (2006) showed that the optimal group preference vector \( w^{c} \) can be obtained by Eq. (A2):

$$ w^{c} = \frac{{G^{ - 1} e}}{{e^{T} G^{ - 1} e}} $$
(A2)

Similar to Model (A1), the OBM can be used to find the optimal individual preference vector \( w^{k} \), which can be described by Model (A3):

$$ \left\{ \begin{array}{l} \hbox{min} \, \left( {w^{k} } \right)^{T} G^{k} w^{k} \hfill \\ s.t.\left\{ \begin{array}{l} e^{T} w^{k} = 1 \hfill \\ w^{k} \ge 0 \hfill \\ \end{array} \right. \hfill \\ \end{array} \right. $$
(A3)

where the individual preference vector \( w^{k} \) is the decision variable in Mode (A3).

In a similar way, the individual preference vectors \( w^{k} \left( {k = 1,2, \ldots ,m} \right) \) can be obtained by Eq. (A4):

$$ w^{k} = \frac{{\left( {G^{k} } \right)^{ - 1} e}}{{e^{T} \left( {G^{k} } \right)^{ - 1} e}} $$
(A4)

Thus, based on Eqs. (A2) and (A4), the OBM can obtain individual preference vectors \( w^{k} \left( {k = 1,2, \ldots ,m} \right) \) and the group preference vector \( w^{c} . \)

Appendix C: The IR-DR CM: Algorithm 2

Herrera-Viedma et al. (2002) proposed a consensus model in GDM with heterogeneous preference structures, in which the IR and DR are employed. Its basic notations are as follows. Let \( P_{{}}^{k} \) and \( P_{{}}^{c} \) be the individual and collective additive preference relations. Let wd and wa be the associated weight vector of decision makers and alternatives. Let \( \alpha \) be the adjustment parameter. Let \( w^{k} = \left( {w_{1}^{k} ,w_{2}^{k} , \ldots ,w_{n}^{k} } \right)^{T} \) be the individual preference vector of \( e_{k} \).

In the IR-DR CM, the transformation functions, presented by Chiclana et al. (1998, 2001), are used to transform heterogeneous preference information into additive preference relations. The individual additive preference relations \( P_{{}}^{k} = \left( {p_{ij}^{k} } \right)_{n \times n} \left( {k = 1,2, \ldots ,m} \right) \) can be obtained by Eq. (A5):

$$ p_{ij}^{k} = \left\{ {\begin{array}{*{20}l} {{{\left( {u_{i}^{k} } \right)^{2} } \mathord{\left/ {\vphantom {{\left( {u_{i}^{k} } \right)^{2} } {\left( {\left( {u_{i}^{k} } \right)^{2} + \left( {u_{j}^{k} } \right)^{2} } \right)}}} \right. \kern-0pt} {\left( {\left( {u_{i}^{k} } \right)^{2} + \left( {u_{j}^{k} } \right)^{2} } \right)}}} \hfill & {e_{k} \in E^{U} } \hfill \\ {p_{ij}^{k} = 0.5\left( {1 + {{\left( {o_{j}^{k} - o_{i}^{k} } \right)} \mathord{\left/ {\vphantom {{\left( {o_{j}^{k} - o_{i}^{k} } \right)} {\left( {n - 1} \right)}}} \right. \kern-0pt} {\left( {n - 1} \right)}}} \right)} \hfill & {e_{k} \in E^{O} } \hfill \\ {p_{ij}^{k} = 0.5\left( {1 + \log_{9} a_{ij}^{k} } \right)} \hfill & {e_{k} \in E^{A} } \hfill \\ \end{array} } \right. $$
(A5)

Then, the IR-DR CM includes two processes:

  1. (1)

    Selection process

In the selection process, we use ordered weighting operators (OWA) to aggregate decision makers’ opinions. An OWA operator of dimension n is a function as \( OWA_{w} \left( {x_{1} ,x_{2} , \ldots ,x_{n} } \right) = \sum\nolimits_{i = 1}^{n} {d_{i} y_{\left( i \right)} } \), where \( y_{\left( i \right)} \) is the ith largest element of \( \left\{ {y_{1} ,y_{2} , \ldots ,y_{n} } \right\} \), and \( d = \left( {d_{1} ,d_{2} , \ldots ,d_{n} } \right)^{T} \) is the associated weight vector, such that \( d_{i} \ge 0\left( {i = 1,2, \ldots ,n} \right) \) and \( \sum\nolimits_{i = 1}^{n} {d_{i} } = 1 \). Linguistic quantifiers are used to calculate the weight vector of decision makers \( wd \) and the weight vector of alternatives \( wa \) in the IR-DR CM.

The collective additive preference relation \( P_{{}}^{c} = \left( {p_{ij}^{c} } \right)_{n \times n} \) can be obtained by Eq. (A6):

$$ p_{ij}^{c} = OWA_{wd} \left( {p_{ij}^{1} ,p_{ij}^{2} , \ldots ,p_{ij}^{m} } \right) $$
(A6)

The individual and group preference vectors \( w^{k} \) and \( w^{c} \) can be obtained by Eqs. (A7) and (A8):

$$ w_{i}^{k} = OWA_{wa} \left( {p_{i1}^{k} ,p_{i2}^{k} , \ldots ,p_{in}^{k} } \right) $$
(A7)
$$ w_{i}^{c} = OWA_{wa} \left( {p_{i1}^{c} ,p_{i2}^{c} , \ldots ,p_{in}^{c} } \right) $$
(A8)

The individual and group preference vectors are transformed into the standardized individual and group preference vectors, \( w^{k*} \) and \( w^{c*} \), where

$$ w_{i}^{k*} = {{w_{i}^{k} } \mathord{\left/ {\vphantom {{w_{i}^{k} } {\sum\limits_{i = 1}^{n} {w_{i}^{k} } }}} \right. \kern-0pt} {\sum\limits_{i = 1}^{n} {w_{i}^{k} } }} $$
(A9)
$$ w_{i}^{c*} = {{w_{i}^{c} } \mathord{\left/ {\vphantom {{w_{i}^{c} } {\sum\limits_{i = 1}^{n} {w_{i}^{c} } }}} \right. \kern-0pt} {\sum\limits_{i = 1}^{n} {w_{i}^{c} } }} $$
(A10)
  1. (2)

    Consensus process

Let

$$ DM\left( {e_{k} } \right) = \sqrt {\frac{1}{2}\sum\limits_{i = 1}^{n} {\left( {w_{i}^{k*} - w_{i}^{c*} } \right)^{2} } } $$
(A11)

If \( DM\left( {e_{q} } \right) = \mathop {\hbox{max} }\limits_{k} \left\{ {DM\left( {e_{k} } \right)|k = 1,2, \ldots ,m} \right\} \), based on the IR, we identify the decision maker \( e_{q} \) who has the worst consensus level. Based on the DR, we guide the decision maker \( e_{q} \) to move his/her opinion to the collective opinion.

In the IR-DR CM, we repeat the selection process and consensus process until all the decision makers’ opinions reach the consensus threshold.

The detailed IR-DR CM can be described as Algorithm 2.

Algorithm 2.

  • Input: The original preference information \( U^{k} \left( {k = 1,2, \ldots ,m_{1} } \right) \), \( O^{k} \left( {k = m_{1} + 1,m_{1} + 2, \ldots ,m_{2} } \right) \), \( A^{k} \left( {k = m_{2} + 1,m_{2} + 2, \ldots ,m_{3} } \right) \), \( P^{k} \left( {k = m_{3} + 1,m_{3} + 2, \ldots ,m} \right) \), the established consensus threshold \( \varepsilon \), the weight vector of decision makers \( wd \), the weight vector of alternatives \( wa \) and the adjustment parameter \( \alpha \)

  • Output: The individual preference vectors \( w^{k} \), the group preference vectors \( w^{c} \) and the number of iterations \( h \)

  • Step 1: Let \( h = 0 \) and \( U_{h}^{k} = U^{k} \left( {k = 1,2, \ldots ,m_{1} } \right) \), \( O_{h}^{k} = O^{k} \left( {k = m_{1} + 1,m_{1} + 2, \ldots ,m_{2} } \right) \), \( A_{h}^{k} = A^{k} \left( {k = m_{2} + 1,m_{2} + 2, \ldots ,m_{3} } \right) \), \( P_{h}^{k} = P^{k} \left( {k = m_{3} + 1,m_{3} + 2, \ldots ,m} \right) \).

  • Step 2: Based on Eqs. (A5A10), transform \( U_{h}^{k} \), \( O_{h}^{k} \), \( A_{h}^{k} \) and \( P_{h}^{k} \) into the individual and group preference vectors \( w_{h}^{k} \) and \( w_{h}^{c} \). Using Eq. (6) calculate the consensus level, i.e. \( CM^{h} = 1 - \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {w_{h,i}^{k} - w_{h,i}^{c} } \right)^{2} } } } \). If \( CM^{h} \ge \varepsilon \), go to Step 4, otherwise, go to the next step.

  • Step 3: Using Eq. (A11) obtains \( DM^{h} \left( {e_{k} } \right) = \sqrt {\frac{1}{2}\sum\limits_{i = 1}^{n} {\left( {w_{h,i}^{k} - w_{h,i}^{c} } \right)^{2} } } \). Without loss of generality, suppose that \( DM^{h} \left( {e_{q} } \right) = \mathop {\hbox{max} }\limits_{k} \left\{ {DM^{h} \left( {e_{k} } \right)|k = 1,2, \ldots ,m} \right\} \). Based on the GPV-based rules, we obtain the adjusted suggestions \( SU_{h,k}^{GPV} \), \( SO_{h,k}^{GPV} \), \( SA_{h,k}^{GPV} \) and \( SP_{h,k}^{GPV} \). For decision maker \( e_{q} \), if \( e_{q} \in E^{U} \), let \( U_{h + 1}^{k} = \left( {u_{h + 1,1}^{k} ,u_{h + 1,2}^{k} , \ldots ,u_{h + 1,n}^{k} } \right)^{T} \), where \( u_{h + 1,i}^{k} { = }\alpha {\text{I}}nf\left\{ {SU_{h,k,i}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SU_{h,k,i}^{GPV} } \right\} \); if \( e_{q} \in E^{O} \), let \( O_{h + 1}^{k} = \left( {o_{h + 1,1}^{k} ,o_{h + 1,2}^{k} , \ldots ,o_{h + 1,n}^{k} } \right)^{T} \) and \( ot_{h,i}^{k} { = }\alpha {\text{I}}nf\left\{ {SO_{h,k,i}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SO_{h,k,i}^{GPV} } \right\} \), where \( o_{h + 1,i}^{k} = t \) when \( ot_{h,i}^{k} \) is the t th smallest value in \( \left\{ {ot_{h,1}^{k} ,ot_{h,2}^{k} , \ldots ,ot_{h,n}^{k} } \right\} \); If \( e_{q} \in E^{A} \), let \( A_{h + 1}^{k} = \left( {a_{h + 1,ij}^{k} } \right)_{n \times n} \), where

    $$ a_{h + 1,ij}^{k} { = }\left\{ {\begin{array}{*{20}l} {\alpha {\text{I}}nf\left\{ {SA_{h,k,ij}^{GPV} } \right\} + \left( {1 - \alpha } \right){\text{Sup}}\left\{ {SA_{h,k,ij}^{GPV} } \right\}} \hfill & {i \ge j} \hfill \\ {1/a_{h + 1,ji}^{k} } \hfill & {i < j} \hfill \\ \end{array} } \right. $$

    if \( e_{q} \in E^{P} \), let \( P_{h + 1}^{k} = \left( {p_{h + 1,ij}^{k} } \right)_{n \times n} \), where

    $$ p_{h + 1,ij}^{k} { = }\left\{ {\begin{array}{*{20}l} {\alpha {\text{I}}nf\left\{ {SP_{h,k,ij}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SP_{h,k,ij}^{GPV} } \right\}} \hfill & {i \ge j} \hfill \\ {1 - p_{h + 1,ji}^{k} } \hfill & {{\kern 1pt} i < j} \hfill \\ \end{array} } \right.. $$

    For decision makers \( e_{k} \left( {k \ne q} \right) \), \( U_{h + 1}^{k} = U_{h}^{k} \), \( O_{h + 1}^{k} = O_{h}^{k} \), \( A_{h + 1}^{k} = A_{h}^{k} \) and \( P_{h + 1}^{k} = P_{h}^{k} \). Then, let \( l = l + 1 \), and go to Step 2.

  • Step 4: Let \( w^{k} = w_{h}^{k} \) and \( w^{c} = w_{h}^{c} \). Output \( w^{k} \), \( w^{c} \) and \( h. \)

Then, Algorithm 2 is called the IR-DR CM.

Appendix D: The OBM CM: Algorithm 3

Because the OBM in Fan et al. (2004) and Ma et al. (2006) cannot guarantee a high consensus level among the decision makers, motivated by the IR-DR CM, we propose the OBM CM. In Step 2 of Algorithm 2, we delete two input parameters wd and wa in the input and replace Step 2 with Step 2*. Then, we can obtain the OBM CM, Algorithm 3.

  • Step 2*: Using Eqs. (A1) and (A2) obtains the group preference vector \( w_{h}^{c} \), and using Eqs. (A3) and (A4) obtains the individual preference vectors \( w_{h}^{k} \left( {k = 1,2, \ldots ,m} \right) \). Using Eq. (6) calculate the consensus level, i.e., \( CM^{h} = 1 - \sqrt {\frac{1}{2m}\sum\limits_{k = 1}^{m} {\sum\limits_{i = 1}^{n} {\left( {w_{h,i}^{k} - w_{h,i}^{c} } \right)^{2} } } } \). If \( CM^{h} \ge \varepsilon \), go to Step 4, otherwise, go to the next step.

Then, Algorithm 3 is called the OBM CM.

Appendix E: The MILCM CM: Algorithm 1′

In Algorithm 1, we replace Step 3 with Step 3′ to obtain Algorithm 1′.

  • Step 3′: Based on IPV-based and GPV-based rules, we obtain the adjusted suggestions \( SU_{h,k}^{IPV} \), \( SO_{h,k}^{IPV} \), \( SA_{h,k}^{IPV} \), \( SP_{h,k}^{IPV} \), \( SU_{h,k}^{GPV} \), \( SO_{h,k}^{GPV} \), \( SA_{h,k}^{GPV} \) and \( SP_{h,k}^{GPV} \). Let \( U_{h + 1}^{k} = \left( {u_{h + 1,1}^{k} ,u_{h + 1,2}^{k} , \ldots ,u_{h + 1,n}^{k} } \right)^{T} \), \( A_{h + 1}^{k} = \left( {a_{h + 1,ij}^{k} } \right)_{n \times n} \) and \( P_{h + 1}^{k} = \left( {p_{h + 1,ij}^{k} } \right)_{n \times n} \), where \( u_{h + 1,i}^{k} { = }\alpha {\text{I}}nf\left\{ {SU_{h,k,i}^{IPV} \cap SU_{h,k,i}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SU_{h,k,i}^{IPV} \cap SU_{h,k,i}^{GPV} } \right\}; \)

    $$ a_{h + 1,ij}^{k} { = }\left\{ {\begin{array}{*{20}l} {\alpha {\text{I}}nf\left\{ {SA_{h,k,ij}^{IPV} \cap SA_{h,k,ij}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SA_{h,k,ij}^{IPV} \cap SA_{h,k,ij}^{GPV} } \right\}} \hfill & {i \ge j} \hfill \\ {1/a_{h + 1,ji}^{k} } \hfill & {i < j} \hfill \\ \end{array} } \right.; $$
    $$ p_{h + 1,ij}^{k} { = }\left\{ {\begin{array}{*{20}l} {\alpha {\text{I}}nf\left\{ {SP_{h,k,ij}^{IPV} \cap SP_{h,k,ij}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SP_{h,k,ij}^{IPV} \cap SP_{h,k,ij}^{GPV} } \right\}} \hfill & {i \ge j} \hfill \\ {1 - p_{h + 1,ji}^{k} } \hfill & {i < j} \hfill \\ \end{array} } \right.. $$

Let \( O_{h + 1}^{k} = \left( {o_{h + 1,1}^{k} ,o_{h + 1,2}^{k} , \ldots ,o_{h + 1,n}^{k} } \right)^{T} \) and \( ot_{h,i}^{k} { = }\alpha {\text{I}}nf\left\{ {SO_{h,k,i}^{IPV} \cap SO_{h,k,i}^{GPV} } \right\} + \left( {1{ - }\alpha } \right){\text{Sup}}\left\{ {SO_{h,k,i}^{IPV} \cap SO_{h,k,i}^{GPV} } \right\} \), where \( o_{h + 1,i}^{k} = t \) when \( ot_{h,i}^{k} \) is the t th smallest value in \( \left\{ {ot_{h,1}^{k} ,ot_{h,2}^{k} , \ldots ,ot_{h,n}^{k} } \right\} \). Let \( h = h + 1 \). Then, go to Step 2.

Then, Algorithm 1′ is called the MILCM CM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Dong, Y. & Herrera-Viedma, E. Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching. Group Decis Negot 28, 585–617 (2019). https://doi.org/10.1007/s10726-018-09609-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10726-018-09609-y

Keywords

Navigation