Skip to main content
Log in

Global profiling of alternative splicing landscape responsive to salt stress in wheat (Triticum aestivum L.)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Alternative splicing (AS) plays crucial roles during plant development especially in stress responses. Although many studies have been performed on AS, the function of which participating in abiotic stress responses is still not well known. To assess the interplay between AS and salt stress, genome-wide analyses of AS were performed. Totally, 11,141 genes were found exhibiting significant AS changes after salt stress treatment, and more AS events were identified in Chinese Spring (CS, salt-sensitive) (21,203) than in Qing Mai 6 (QM, salt-tolerant) (19,742). Meanwhile, wheat homeologous genes displayed differential AS responses under salt stress treatment, and 7235, 8143 and 7407 AS events were identified on subgenome A, B and D respectively. Comparison of AS events at different time after salt stress showed that 4747 and 4129 salt stress responsive AS events were characterized in CS and QM, respectively, and most AS events were induced at 48 h after salt stress (HAS) compared with the other three stages. Functional enrichment analysis found that abiotic stress responsive pathways tended to be enriched in partitioned differentially spliced genes (DSGs) between CS and QM after salt stress treatment, and Pfam classification showed that many stress related proteins were also enriched under salt stress condition. Thus, these results demonstrated that AS regulation may play key roles in response to salt stress, which, together with transcriptional regulation, contributes to abiotic stress tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander D, Davis CA, Felix S, Jorg D, Chris Z, Sonali J, Philippe B, Mark C, Thomas RG (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 1:1

    Google Scholar 

  • Amin USM, Biswas S, Elias SM, Razzaque S, Haque T, Malo R, Seraj ZI (2016) Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5’ UTR in transgenic lines of rice. Front Plant Sci 7:14–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Person AS (2018) Mapping of novel salt tolerance QTL in an Excalibur x Kukri doubled haploid wheat population. Theor Appl Genet 131:2179–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Brooks AN, Yang L, Duff MO, Hansen KD, Park JW, Dudoit S, Brenner SE, Graveley BR (2011) Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res 21:193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) Blast+:architecture and applications. BMC Bioinformatics 10(1):421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang CY, Lin WD, Tu SL (2014) Genome-wide analysis of heat sensitive alternative splicing in Physcomitrella patens. Plant Physiol 165:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DD, Chai SC, Mcintyre CL, Xue GP (2017) Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Rep 37(2):225–237

    Article  PubMed  CAS  Google Scholar 

  • Clayton JC, Phelan M, Goult BT, Hautbergue GM, Wilson SA, Lian LY (2011) The 1 H, 13 C and 15 N backbone and side-chain assignment of the RRM domain of SC35, a regulator of pre-mRNA splicing. Biomol NMR Assign 5(1):7–10

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Cui P, Wang ZY, Zhang SD, Ali S, Xiong LM (2014) Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genom 15:431

    Article  CAS  Google Scholar 

  • Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T (2017) A lipid-anchored NAC transcription factor Is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell 29(7):1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao YY, Wang Y, Xin HP, Li SH, Liang ZC (2017)Involvement of ubiquitin-conjugating enzyme (E2 gene family) in ripening process and response to cold and heat stress of vitis vinifera. Sci Rep 7(1):13290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulledge AA, Roberts AD, Vora H, Patel K, Loraine AE (2012) Mining Arabidopsis thaliana RNA-seq data with integrated genome browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a. Am J Bot 99(2):219–231

    Article  CAS  PubMed  Google Scholar 

  • Guo WW, Zhang JX, Zhang N, Xin MM, Peng HR, Hu ZR, Ni ZF, Du JK (2015) The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic arabidopsis. Plos One 10(8):e0135667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jahan N, Zhang Y, Lv Y, Song MQ, Zhao CY, Hu HT, Cui YT, Wang ZW, Yang SL, Zhang AP, Hu J, Ye GY, Qian Q, Gao ZY, Guo LB (2020) QTL analysis for rice salinity tolerance and fine mapping of a candidate locus qSL7 for shoot length under salt stress. Plant Growth Regul 90:307–319

    Article  CAS  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform 11(1):431

    Article  CAS  Google Scholar 

  • Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004) The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 381(2):373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JWS (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40(6):2454–2469

    Article  CAS  PubMed  Google Scholar 

  • Kelemen O, Convertini P, Zhang ZY, Wen Y, Shen ML, Falaleeva M, Stamm S (2013) Function of alternative splicing. Gene 514(1):1–30

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/mMap format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Lin J, Yang QS, Li XG, Chang YH (2017) Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-SEq. Plant Growth Regul 82:409–420

    Article  CAS  Google Scholar 

  • Ling ZH, Zhou WW, Baldwin IT, Xu SQ (2015) Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata. the Plant Journal 84:228–243

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Cai SG, Wang G, Wang FF, Dong FB, Mak M, Holford P, Ji J, Salih A, Zhou MX, Shabala S, Chen ZH (2017) Halophytic NHXs confer salt tolerance by altering cytosolic and vacuolar K+ and Na+ in Arabidopsis root cell. Plant Growth Regul 82:333–351

    Article  CAS  Google Scholar 

  • Liu ZS, Qin JX, Tian XJ, Xu SB, Wang Y, Li HX, Wang XM, Peng HR, Yao YY, Hu ZR, Ni ZF, Xin MM, Sun QX (2018) Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol Journal 16

  • Loupassaki MH, Chartzoulakis KS, Digalaki NB, Androulakis II (2002) Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J Plant Nutr 25(11):2457–2482

    Article  CAS  Google Scholar 

  • Mao XG, Zhang HY, Qian XY, Li A, Zhao GY, Jing RL (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63(8):2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E (2014) Genome-wide survey of alternative splicing in Sorghum bicolor.Physiol Mol Biol Plants 20(3):323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parani M, Jithesh MN, Lakshmi M, Parida A (2002) Cloning and characterization of a gene encoding ubiquitin conjugating enzyme from the mangrove species, Avicennia marina (forsk.) Vierh. Indian J Biotechnol 1(2):164–169

    CAS  Google Scholar 

  • Reddy ASN, Ali GS (2011) Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdisciplinary Rev-RNA 2:875–889

    Article  CAS  Google Scholar 

  • Reddy ASN, Marquez Y, Kalyna M, Barta A (2013) Complexity of the aternative splicing landscape in plants. Plant Cell 25:3657–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren ZJ, Liu Y, Kang D, Fan KJ, Wang CY, Wang GY, Liu YJ (2015) Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants. Plant Cell Tissue Organ Cult 123(3):569–578

    Article  CAS  Google Scholar 

  • Schindler S, Szafranski K, Hiller M, Ali GS, Palusa SG, Backofen R, Platzer M, Reddy ASN (2008) Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genom 9(1):159

    Article  CAS  Google Scholar 

  • Shao M, Kingsford C (2017) Accurate assembly of transcripts through phase-preserving graph decomposition. Nat Biotechnol 35(12):1167–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Je J, Hong JK, Lim CO (2014) Ectopic expression of an Arabidopsis dehydration-responsive element-binding factor DREB2C improves salt stress tolerance in crucifers. Plant Cell Rep 33(8):1239–1254

    Article  CAS  PubMed  Google Scholar 

  • Sugliani M, Brambilla V, Clerkx EJM, Koornneef M, Soppe WJJ (2010) The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22(6):1936–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JWS (2012) Alternative splicing in plants–coming of age. Trends Plant Sci 17(10):616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, Mcdonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62(6):2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatcher SR, Danilevskaya ON, Meng X, Beatty M, Zastrow-Hayes G, Harris C, Van Allen B, Habben J, Li B (2016) Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiol 170:586–599

    Article  CAS  PubMed  Google Scholar 

  • Viana VE, Busanello C, da Maia LC, Pegoraro C, Costa de Oliveira A (2018) Activation of rice WRKY transcription factors: an army of stress fighting soldiers? Curr Opin Plant Biol 45(Part B):268–275

    Article  CAS  PubMed  Google Scholar 

  • Wang SJ, Wang JY, Yao WJ, Zhou BR, Jiang TB (2016) Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to osmotic stress and ABA treatment. Plant Growth Regul 78:325–333

    Article  CAS  Google Scholar 

  • Wang M, Zhang PL, Liu Q, Li GJ, Di DW, Xia GM, Kronzucker HJ, Fang S, Chu JF, Shi WM (2020) TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots. Plant Physiol 182:1440–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang GY, Zhang WH, Sun YD, Zhang TT, Hu D, Zhai MZ (2017) Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses. Biol Plant 61(4):611–621

    Article  CAS  Google Scholar 

  • Yeoh LM, Goodman CD, Hall NE, Van Dooren GG, Mcfadden GI, Ralph SA (2015) A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii. Nucleic Acids Res 43(9):4661–4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SW, Huang A, Li J, Gao L, Feng YN, Pemberton E, Chen C (2018) OsNAC45 plays complex roles by mediating POD activity and the expression of development-related genes under various abiotic stresses in rice root. Plant Growth Regul 84:519–531

    Article  CAS  Google Scholar 

  • Zhang P, Deng H, Xiao FM, Liu YS (2013) Alterations of Alternative Splicing Patterns of Ser/Arg-Rich (SR) Alterations of alternative splicing patterns of Ser/Arg-rich (SR) senes in response to hormones and stresses treatments in different ecotypes of rice (Oryza sativa). J Integrat Agric 12(5):737–748

    Article  Google Scholar 

  • Zhang YM, Liu ZS, Khan AA, Lin Q, Han Y, Mu P, Liu YG, Zhang HS, Li LY, Meng XH, Ni ZF, Xin MM (2016) Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci Rep 6(1):21476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wang LQ, Zhou CJ, Shang HB (2006) Effects of calcium on seed germination of different winter wheat genotypes under salt stress. Chin J Soil Sci 37(4):748–752

    CAS  Google Scholar 

  • Zhou YJ, Yang Q, Zhong XJ, Tang HP, Deng M, Ma J, Qi PF, Wang JR, Chen GY, Liu YX, Lu ZX, Li W, Lan XJ, Wei YM, Zheng YL, Jiang QT (2018) Alternative splicing results in a lack of starch synthase iia-d in chinese wheat landrace. Genome 61(3):2017–0246

    Google Scholar 

  • Zhu GZ, Li WX, Zhang F, Guo WZ (2018) RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii. BMC Genom 19(1):73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mingming Xin (College of Agronomy, China Agricultural University) for critical reading of this manuscript. This work was supported by Science and Technology Program of Colleges and Universities in Shandong Province (J17KA143) and Foundation for High-level Talents of Qingdao Agriculture University (6631118022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was collection by Liping Han, Ximei Li, Huifang Wang and Yiguo Liu. Data collection and analysis were performed by Weiwei Guo and Kuohai Yu. The first draft of the manuscript was written by Weiwei Guo and Yumei Zhang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yumei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Yu, K., Han, L. et al. Global profiling of alternative splicing landscape responsive to salt stress in wheat (Triticum aestivum L.). Plant Growth Regul 92, 107–116 (2020). https://doi.org/10.1007/s10725-020-00623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00623-2

Keywords

Navigation