Skip to main content
Log in

Photosynthetic response of soybean to L-DOPA and aqueous extracts of velvet bean

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

L-3,4-Dihydroxyphenylalanine (L-DOPA) is an allelochemical released by roots of velvet bean (Mucuna pruriens) that affects the growth of several plant species. However, its mechanism of action is inconclusive. In this work, we compared the effects of L-DOPA (0.01–1.0 mmol L−1) and of aqueous extracts (300, 1200, and 3000 mg L−1) of velvet bean on growth and photosynthesis (gas exchange and chlorophyll a fluorescence) of soybean (Glycine max). Overall, the results showed that both L-DOPA and aqueous extracts of velvet bean reduced the growth, leaf area, photosynthetic rate (A), stomatal conductance (gs), transpiration (E), and quantum yield of electron flow through photosystem II (PSII) in vivo (ΦF). In addition, L-DOPA and aqueous extracts increased the internal CO2 concentration (Ci) and the leaf wax and trichome density on the leaf surface, while the maximum quantum yield of PSII (Fv/Fm) was not changed. These results suggest that the reduction of A should not be related exclusively to the stomatal closure, but also to limitations of the carbon metabolism, as indicated by the increase of Ci and decrease of ΦF. Briefly, we concluded that soybean growth inhibition by L-DOPA and aqueous extracts of velvet bean is due to the combination of damage in the root meristem and reduction in A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adami M, Hastenreiter FA, Flumignan DL, Faria RT (2008) Soybean leaflet area estimation using digital imagery and leaf dimensions. Bragantia 64:1053–1058

    Article  Google Scholar 

  • Anaya AL (1999) Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit Rev Plant Sci 18:697–738

    Article  CAS  Google Scholar 

  • Araus JL, Hogan KP (1994) Leaf structure and patterns of photoinhibition in two neotropical palms in clearings and forest understory during the dry season. Am J Bot 81:726–738

    Article  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves Plant. Cell Environ 30:1107–1125

    Article  CAS  Google Scholar 

  • Barkosky RR, Einhellig FA (1993) Effects of salicylic acid on plant-water relationships. J Chem Ecol 19:237–247

    Article  CAS  PubMed  Google Scholar 

  • Barkosky RR, Einhellig FA (2003) Allelopathic interference of plant-water relationships by para-hydroxybenzoic acid. Bot Bull Acad Sin 44:53–58

    CAS  Google Scholar 

  • Batish DR, Gupta P, Singh HP, Kohli RK (2006) L-DOPA (L-3,4-dihydroxyphenylalanine) affects rooting potential and associated biochemical changes in hypocotyl of mung bean, and inhibits mitotic activity in onion root tips. Plant Growth Regul 49:229–235

    Article  CAS  Google Scholar 

  • Baziramakenga R, Simard RR, Leroux GD (1994) Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean. J Chem Ecol 20:2821–2833

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. J Chem Ecol 31:1907–1932

    Article  CAS  PubMed  Google Scholar 

  • Burman U, Garg BK, Kathju S (2003) Water relations, photosynthesis and nitrogen metabolism of Indian mustard (Brassica juncea Czern. & Coss.) grown under salt and water stress J. Plant Biol 30:55–60

    Google Scholar 

  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594

    Article  Google Scholar 

  • Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Einhellig FA (1995) Mode of allelochemical action of phenolic compounds. CRC Press, London

    Google Scholar 

  • Everard JD, Gucci R, Kann SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis Ann Rev. Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Fujii Y (1999) Allelopathy of velvetbean: determination and identification of L-DOPA as a candidate os allelopathic substance. CRC Press, Boca Raton

    Book  Google Scholar 

  • Fujii Y (2003) Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from velvet bean (Mucuna pruriens) and hairy vetch (Vicia villosa). Biol Sci Space 17:6–13

    Article  PubMed  Google Scholar 

  • Furubayashi A, Hiradate S, Fujji Y (2005) Adsorption and transformation reactions of L-DOPA in soils. Soil Sci Plant Nutr 51:819–825

    Article  CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Golisz A, Sugano M, Hiradate S, Fujii Y (2011) Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA. Planta 233:231–240

    Article  CAS  PubMed  Google Scholar 

  • Hachinohe M, Sunohara Y, Matsumoto H (2004) Absorption, translocation and metabolism of L-DOPA in barnyardgrass and letucce: their involvement in species-selective phytotoxic action. Plant Growth Regul 43:237–243

    Article  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiological and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hejl AM, Koster KL (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J Chem Ecol 30:453–471

    Article  CAS  PubMed  Google Scholar 

  • Hussain MI, Reigosa MJ (2011) Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J Exp Bot 62:4533–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II Interpretation of fluorescence signals. Photosynth Res 5:139–157

    Article  CAS  PubMed  Google Scholar 

  • Lu KX, Cao BH, Feng XP, Jiang DA (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica 47:381–387

    Article  CAS  Google Scholar 

  • Mohammadian MA, Watling JR, Hill RS (2007) The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecol 31:93–101

    Article  Google Scholar 

  • Nakajima N, Hiradate S, Fujii Y (1999) Characteristics of growth inhibitory effect of L-3,4-dihydroxyphenylalanine (L-DOPA) on cucumber seedlings. J Weed Sci Technol 44:132–138

    Article  CAS  Google Scholar 

  • Nishihara E, Parvez MM, Araya H, Fujii Y (2004) Germination growth response of different plant species to the allelochemical L-3,4-dihydroxyphenylalanine (L-DOPA). Plant Growth Regul 42:181–189

    Article  CAS  Google Scholar 

  • Nishihara E, Parvez MM, Araya H, Kawashima S, Fujii Y (2005) L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul 45:113–120

    Article  CAS  Google Scholar 

  • Pugalenthi M, Vadivel V, Siddhuraju P (2005) Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis—a review. Plant Foods Hum Nutr 60:201–218

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreiras AM, Oliveros-Bastidas A, Reigosa MJ (2010) Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. J Chem Ecol 36:205–209

    Article  PubMed  Google Scholar 

  • Soares AR, Ferrarese MLL, Siqueira RC, Böhm FMLZ, Ferrarese-Filho O (2007) L-DOPA increases lignification associated with Glycine max root growth-inhibition. J Chem Ecol 33:265–275

    Article  CAS  PubMed  Google Scholar 

  • Soares AR, Ferrarese MLL, Siqueira-Soares RC, Marchiosi R, Finger-Teixeira A, Ferrarese-Filho O (2011) The allelochemical L-DOPA increases melanin production and reduces reactive oxygen species in soybean roots. J Chem Ecol 37:891–898

    Article  CAS  PubMed  Google Scholar 

  • Soares AR, Marchiosi R, Siqueira-Soares RC, Lima RB, dos Santos WD, Ferrarese-Filho O (2014) The role of L-DOPA in plants. Plant Signal Behav 9:e28275

    Article  PubMed Central  Google Scholar 

  • St-Laurent L, Livesey J, Arnason JT, Bruneau A (2002) Variation in L-DOPA concentration in accessions of Mucuna pruriens (L.) DC and in Mucuna brachycarpa Rech. In: Proceedings of the international workshop “Food and Feed from Mucuna: Current Uses and the Qay Forward”, Tegucigalpa, Honduras. CIDICCO, pp 352–374

  • Taiz L, Zeiger E (2010) Plant physiology. Sinauer, Sunderland

    Google Scholar 

  • Tomita-Yokotani K, Hashimoto H, Fujii Y, Nakamura T, Yamashita M (2004) Distribution of L-DOPA in the root of velvet bean plant (Mucuna pruriens L.) and gravity. Biol Sci Space 18:165–166

    PubMed  Google Scholar 

  • Topal S, Kocaçaliskan I (2006) Allelopathic effects of DOPA against four weed species. DPÜ Fen Bil Enst 11:27–32

    Google Scholar 

  • Zhou YH, Yu JQ (2006) Allelochemical and photosynthesis. Springer, Netherlands

    Book  Google Scholar 

  • Zobiole LHS, Kremer RJ, Oliveira RS, Constantin J (2010) Glyphosate affects photosynthesis in first and second generation of glyphosate-resistant soybe ans. Plant Soil 336:251–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

O. Ferrarese-Filho and M.L.L. Ferrarese are research fellows of National Council for Scientific and Technological Development (CNPq). R. Marchiosi was the recipient of a CNPq fellowship. The authors thank Aparecida M.D. Ramos for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Marchiosi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchiosi, R., de Souza Bido, G., Böhm, P.A.F. et al. Photosynthetic response of soybean to L-DOPA and aqueous extracts of velvet bean. Plant Growth Regul 80, 171–182 (2016). https://doi.org/10.1007/s10725-016-0154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0154-2

Keywords

Navigation