Skip to main content
Log in

Screening of stomatal mutants in Arabidopsis using a novel controlled environmental infrared imaging system

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Isolation and characterization of stomatal mutants is essential for a better understanding of the genetic and physiological underpinning of guard cell responses to environmental stimuli. A precisely controlled environmental chamber (PCEC) system specifically for screening stomatal mutants has been developed. The PCEC consists of several parts including plant chamber, environmental control unit and infrared camera. A window made of optical germanium with high transmittance to infrared light is embedded in the top of the plant chamber so that the surface temperature of plants can be accurately monitored by the infrared camera outside the chamber, while the environment can be stably maintained inside the sealed and double-glazed chamber. Using this novel PCEC system, we carried out a series of genetic screenings on a SALK T-DNA insertion population and identified some new stomatal mutants showing a reduced response to humidity, CO2 or temperature. Furthermore, we characterized a mutant with lower leaf thermal profile under low humidity and designated it as low humidity response1 (lhr1). The lhr1 mutant showed reduced sensitivity to external stimuli and increased transpirational water loss due to a defect in stomatal regulation. Our results suggest that this novel system can conveniently and accurately assess the impact of changing environmental conditions on stomatal behavior and facilitate the studies into the signal transduction pathways of guard cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Ai-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel RR, Bittner F, Hetherington AM, Hedrich R (2013a) The stomatal response to reduced relative humidity requires guard cell autonomous ABA synthesis. Curr Biol 23:53–57

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Ache P, Wohlfart F, Al-Rasheid KA, Sonnewald S, Sonnewald U, Kneitzd S, Hetherington AM, Hedrich R (2013b) How do stomata sense reductions in atmospheric relative humidity? Mol Plant 6:1703–1706

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949

    Article  CAS  PubMed  Google Scholar 

  • Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460

    Article  CAS  Google Scholar 

  • Duan BB, Ma YH, Jiang MR, Yang F, Ni L, Lu W (2015) Improvement of photosynthesis in rice (Oryza sativa L.) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment. Plant Growth Regul 75:33–44

    Article  CAS  Google Scholar 

  • Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto-Sugimoto M, Higaki T, Yaeno T, Nagami A, Irie M, Fujimi M, Miyamoto M, Akita K, Negi J, Shirasu K, Hasezawa S, Iba K (2013) A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat Commun 4:2215

    Article  PubMed  PubMed Central  Google Scholar 

  • Hetherington AM (2001) Guard cell signalling. Cell 107:711–714

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Sorefan K, Deeks MJ, Bevan MW, Hussey PJ, Hetherington AM (2012) The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24:2031–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell Environ 22:1043–1055

    Article  Google Scholar 

  • Kim TH, Böhmer M, Hu HH, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 6:1561–1591

    Google Scholar 

  • Kusumi K, Hirotsuka S, Kumamaru T, Iba K (2012) Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot 15:5635–5644

    Article  Google Scholar 

  • Liang YK, Xie XD, Lindsay SE, Wang YB, Masle J, Williamson L, Leyser O, Hetherington AM (2010) Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana. Plant J 64:679–686

    Article  CAS  PubMed  Google Scholar 

  • McAusland L, Davey PA, Kanwal N, Baker NR, Lawson T (2013) A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. J Exp Bot 64:4993–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermography to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  CAS  PubMed  Google Scholar 

  • Negi J, Hashimoto-Sugimoto M, Kusumi K, Iba K (2014) New approaches to the biology of stomatal guard cells. Plant Cell Physiol 55:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin I, Ladyman JAR (1988) Isolation and characterization of a barley mutant with abscisic-acid-insensitive stomata. Planta 173:73–78

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang HJ, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saji S, Bathula S, Kubo A, Tamaoki M, Kanna M, Aono M, Nakajima N, Nakaji T, Takeda T, Asayama M, Saji H (2008) Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone sensitivity through deregulation of the stomatal response in Arabidopsis thaliana. Plant Cell Physiol 49:2–10

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Allen GJ, Hugovieux V, Kwak JM, Warner D (2001a) Guard cell signal transduction. Annu Rev Plant Biol Plant Mol Biol 52:627–658

    Article  CAS  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001b) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    Article  CAS  PubMed  Google Scholar 

  • Song YW, Kang YL, Liu H, Zhao XL, Wang PT, An GY, Zhou Y, Miao C, Song CP (2006) Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses. Chin Sci Bull 51:2586–2594

    Article  CAS  Google Scholar 

  • Takemiya A, Sugiyama N, Fujimoto H, Tsutsumi T, Yamauchi S, Hiyama A, Tada Y, Christie JM, Shimazaki K (2013) Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 4:2094

    Article  PubMed  Google Scholar 

  • Wang YB, Holroyd G, Hetherington AM, Ng CKY (2004) Seeing ‘cool’ and ‘hot’-infrared thermography as a tool for non-invasive, high-throughput screening of Arabidopsis guard cell signalling mutants. J Exp Bot 55:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Webb AA, Hetherington AM (1997) Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol 114:1557–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmer C, Fricker M (1996) Stomata, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Xie XD, Wang YB, Williamson L, Holroyd GH, Tagliavia C, Murchie E, Theobald J, Knight MR, Davies WJ, Leyser HMO, Hetherington AM (2006) The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr Biol 16:882–887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Oliver Heaton (University of Bristol, UK) for his critical reading of the manuscript. This work was supported by Natural Science Foundation (14JCYBJC30600) and Innovation Team Scheme (TD12-5017) of Tianjin; Higher School Science and Technology Program of Tianjin (20130606 and 20130620) and National High-tech R&D Program of China (2012AA10A309 and 2011AA100104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Xie.

Additional information

Junbin Wang and Yaolin Guo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Guo, Y., Ding, B. et al. Screening of stomatal mutants in Arabidopsis using a novel controlled environmental infrared imaging system. Plant Growth Regul 79, 157–165 (2016). https://doi.org/10.1007/s10725-015-0121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0121-3

Keywords

Navigation