Skip to main content
Log in

Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitric oxide and calcium are two kinds of signaling molecules that are the key secondary messenger. An experiment was conducted in saline culture solution to examine the cross-talk interactions of nitric oxide and calcium in common wheat under NaCl stress. Addition of 100 mM NaCl reduced plant growth, decreased the chlorophyll content and root activity, increased the reactive oxygen species (such as \( {\text{O}}_{2}^{ \cdot - } \) and H2O2) level, lipid peroxidation and electrolyte leakage, and suppressed the activities of antioxidant enzymes in wheat seedlings. Moreover, high Na+ resulted in the deficiency of mineral nutrients. While addition of 0.10 mM sodium nitroprusside (a NO donor) and/or 17.50 mM Ca(NO3)2 (Na/Ca = 5) alleviated a decline in chlorophyll content, root activity and soluble sugar content, stimulated the activities of antioxidant enzymes such as superoxide dismutase, peroxidase and catalase and decreased the electrolyte leakage, lipid peroxidation, H2O2 content, \( {\text{O}}_{2}^{ \cdot - } \) generation rate. Furthermore, the concentrations of potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), iron (Fe) and copper (Cu) concentrations in the leaves and roots of wheat were increased, indicating that application of Ca(NO3)2 facilitated the maintenance of ion homeostasis, while the exogenous NO improved the uptake of Ca. The results suggest that the nitric oxide and calcium are effective in alleviating the adverse effects of salt stress: the nitric oxide is more actively involved in antioxidant system while the calcium is more beneficial to ion homeostasis. When applied in combination, Ca(NO3)2 could counteract the toxicity of exogenous NO to the root, while the exogenous NO may promote the selectivity of uptake and transport of Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

[Ca2+]cyt :

Cytosolic free calcium

cADPR:

Cyclic ADP-ribose

CAT:

Catalase

cGMP:

Cyclic guanosine monophosphate

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

NO:

Nitric oxide

\( {\text{O}}_{2}^{ \cdot - } \) :

Superoxide anion radical

POD:

Peroxidase

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

References

  • Bernstein L, Francois LE, Clark RA (1974) Interactive effects of salinity and fertility on yields of grains and vegetables. Agron J 66:412–421

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Briskin DP, Leonard RT, Hodges TK (1987) Isolation of the plasma membrane: markers and general principles. Methods Enzymol 148:542–558

    Article  CAS  Google Scholar 

  • Buet A, Moriconi JI, Santa-María GE, Simontacchi M (2014) An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants. Plant Physiol Biochem 83:337–345

    Article  CAS  PubMed  Google Scholar 

  • Clark D, Durner J, Navarre DA (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  CAS  PubMed  Google Scholar 

  • Duncan DR, Widholm JM (2004) Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures. J Plant Physiol 161:397–403

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Giannakoula A, Moustakas M, Mylona P, Ioannis P, Traianos Y (2008) Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline and decreased levels of lipid peroxidation and Al accumulation. J Plant Physiol 165:385–396

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to colletotrchum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Duncan RR, Carrow RN (1997) Drought-resistance mechanisms of seven warm-season tur grasses under surface soil drying. Crop Sci 37:1863–1869

    Article  Google Scholar 

  • Kaya C, Ak BE, Higgs D, Murillo-Amador B (2002) Influence of foliar applied calcium nitrate on strawberry plants grown under salt stress conditions. Aust J Exp Agric 42:631–636

    Article  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Khan MMA, Naeem M (2007) Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World J Agric Sci 3:685–695

    Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27:210–218

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Courtois C, Dobrowolska G, Besson A, Pugin A, Waendehenne D (2006) Mechanism of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radic Biol Med 40:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Läuchli A (1990) Calcium, salinity and the plasma membrane. In: Leonard RT, Hepler PK (eds) Calcium in plant growth and development. American Society of Plant Physiology, Rockville, pp 26–35

    Google Scholar 

  • Läuchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management. Manuals rep. on eng. practice no. 71. ASCE, New York, pp 113–137

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze—nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Si J, Nikolic M, Peng Y, Chen W, Jiang Y (2005) Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem 37:1185–1195

    Article  CAS  Google Scholar 

  • Lichtenthaler H (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–68

    Article  CAS  Google Scholar 

  • Magdalena A, Jolanta FW (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Science Press, Beijing

    Google Scholar 

  • Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL (2014) Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 39:35–45

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Muhammed S, Akbar M, Neue HU (1987) Effect of Na/Ca and Na/K ratios in saline culture solution on growth and mineral nutrition of rice. Plant Soil 104:57–62

    Article  CAS  Google Scholar 

  • Murillo-Amador B, Jones HG, Kaya C et al (2006) Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea grown under salt stress. Environ Exp Bot 58:188–196

    Article  CAS  Google Scholar 

  • Nakazawa H, Genka C, Fujishima M (1996) Pathological aspects of active oxygens/free radicals. J Physiol 46:15–32

    CAS  Google Scholar 

  • Ohinishi T, Gall RS, Mayer ML (1975) An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATP-ase assay in the presence of phosphocreatine. Anal Biochem 69:261–267

    Article  Google Scholar 

  • Patel NT, Vaghela PM, Patel AD, Pandey AN (2011) Implications of calcium nutrition on the response of Caesalpinia crista (Fabaceae) to soil salinity. Acta Ecol Sin 31:24–30

    Article  Google Scholar 

  • Peiter E (2011) The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 50:120–128

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Liu H, Liu P et al (2012) Morphological and physiological characteristics of corn roots from cultivars with different yield potentials. Eur J Agron 38:54–63

    Article  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Scrase-Field S, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6:500–506

    Article  CAS  PubMed  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542–550

    Article  CAS  PubMed  Google Scholar 

  • Simaei M, Khavarinejada RA, Saadatmanda S, Bernardb F, Fahimia H (2011) Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. Russ J Plant Physiol 58:783–790

    Article  CAS  Google Scholar 

  • Tariq A, Masroor M, Khan A, Jaime A, da Teixeira S, Mohd I, Naeem M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435

    Article  Google Scholar 

  • Trewavas AJ, Malhó R (1998) Ca2+ signaling in plant cells: the big network! Curr Opin Plant Biol 1:428–433

    Article  CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Zhen Y (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    Article  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Dong J, Liu F (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese National Basic Research Program (2015CB150404), indigenous innovation project of Shandong province (2014 ZZCX07401) and a Project of Shandong Agricultural University saline and alkaline land (75030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., He, M., Wang, Z. et al. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul 77, 343–356 (2015). https://doi.org/10.1007/s10725-015-0069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0069-3

Keywords

Navigation