Skip to main content

Advertisement

Log in

The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plants are sessile organisms and have multiple tolerance mechanisms which allow them to adapt to the environmental stresses to which they may be exposed. Key to a plant’s tolerance of abiotic stresses is the ability to rapidly detect stress and activate the appropriate stress response mechanism. The calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) signalling pathway is a flexible Ca2+ signalling network which allows a plant to fine tune its response to stress, via both pre- and post-translational mechanisms. Genes encoding CBLs and CIPKs have now been identified in a variety of plant species. Plants have been found to have large gene families of CBLs and CIPKs, each encoding proteins with specific upstream and downstream targets, thus providing the flexibility required to allow a plant to adapt to a variety of stresses. Characterisation of CBL and CIPK mutants have shown them to be important for a plant to survive cold, drought, heat, salinity and low nutrient stresses. Many CBLs and CIPKs have been shown to be involved in the transport of ions through a plant, either limiting the supply of toxic ions to certain tissues or maximising the uptake of beneficial nutrients from the soil. This review will provide an update into the current knowledge of CBL and CIPK interactions and their role in ion transport during abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein–protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051–1063

    PubMed Central  CAS  PubMed  Google Scholar 

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    CAS  PubMed  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Batistič O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915–924

    PubMed  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293

    PubMed  Google Scholar 

  • Batistič O, Sorek N, Schültke S, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362

    PubMed Central  PubMed  Google Scholar 

  • Batistič O, Waadt R, Steinhorst L, Held K, Kudla J (2010) CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J 61:211–222

    PubMed  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:1–17

    Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    CAS  PubMed  Google Scholar 

  • Chen J-H, Sun Y, Sun F, Xia X-L, Yin W-L (2011a) Tobacco plants ectopically expressing the Ammopiptanthus mongolicus AmCBL1 gene display enhanced tolerance to multiple abiotic stresses. Plant Growth Regul 63:259–269

    CAS  Google Scholar 

  • Chen X, Gu Z, Liu F, Ma B, Zhang H (2011b) Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses. Rice Sci 18:1–9

    Google Scholar 

  • Chen L, Ren F, Zhou L, Wang Q-Q, Zhong H, Li X-B (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63:6211–6222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Wang Q-Q, Zhou L, Ren F, Li D-D, Li X-B (2013) Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40:4759–4767

    CAS  PubMed  Google Scholar 

  • Chen X, Huang Q, Zhang F, Wang B, Wang J, Zheng J (2014) ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci 15:14819–14834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheong Y, Kim K, Pandey G, Gupta R, Grant J, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim B-G, Lee S-C, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    CAS  PubMed  Google Scholar 

  • Cheong YH, Sung SJ, Kim B-G, Pandey GK, Cho J-S, Kim K-N, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29:159–165

    CAS  PubMed  Google Scholar 

  • Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    PubMed Central  PubMed  Google Scholar 

  • Choi W-G, Toyota M, Kim S-H, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA 111:6497–6502

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuéllar T, Pascaud F, Verdeil J-L, Torregrosa L, Adam-Blondon A-F, Thibaud J-B, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61:58–69

    PubMed  Google Scholar 

  • Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil J-L, Sentenac H, Zimmermann S, Gaillard I (2013) Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK–CBL complexes and induced in ripening berry flesh cells. Plant J 73:1006–1018

    PubMed  Google Scholar 

  • D’Angelo C, Weinl S, Batistič O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872

    PubMed  Google Scholar 

  • De la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin GB, del Pozo O (2013) The tomato calcium sensor CBL10 and its interacting protein kinase CIPK6 define a signaling pathway in plant immunity. Plant Cell 25:2748–2764

    PubMed Central  PubMed  Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344

    CAS  PubMed  Google Scholar 

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013a) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deng X, Zhou S, Hu W, Feng J, Zhang F, Chen L, Huang C, Luo Q, He Y, Yang G, He G (2013b) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149:367–377

    CAS  PubMed  Google Scholar 

  • Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    CAS  PubMed  Google Scholar 

  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    CAS  PubMed  Google Scholar 

  • Eckert C, Offenborn JN, Heinz T, Armarego-Marriott T, Schültke S, Zhang C, Hillmer S, Heilmann M, Schumacher K, Bock R, Heilmann I, Kudla J (2014) The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana. Plant J 78:146–156

    CAS  PubMed  Google Scholar 

  • Elphick CH, Sanders D, Maathuis FJM (2001) Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant Cell Environ 24:733–740

    CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224

    CAS  PubMed  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LGG, Ramírez-Aguilar SJ, Gomez-Porras JL, González W, Thibaud J-B, van Dongen JT, Dreyer I (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao S, Yuan L, Zhai H, Liu C, He S, Liu Q (2012) Overexpression of SOS genes enhanced salt tolerance in sweetpotato. J Integr Agric 11:378–386

    CAS  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2003) Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul 40:157–162

    CAS  Google Scholar 

  • Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415:1–12

    CAS  PubMed  Google Scholar 

  • Guo Y, Xiong L, Song C-P, Gong D, Halfter U, Zhu J-K (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    CAS  PubMed  Google Scholar 

  • Guo Y, Qiu Q-S, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu J-K (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740

    PubMed Central  CAS  PubMed  Google Scholar 

  • He L, Yang X, Wang L, Zhu L, Zhou T, Deng J, Zhang X (2013) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 435:209–215

    CAS  PubMed  Google Scholar 

  • Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratgé-Faillie C, Offenborn JN, Lacombe B, Dreyer I, Thibaud J-B, Kudla J (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21:1116–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ho C-H, Lin S-H, Hu H-C, Tsay Y-F (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194

    CAS  PubMed  Google Scholar 

  • Hu H-C, Wang Y-Y, Tsay Y-F (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278

    CAS  PubMed  Google Scholar 

  • Hu D-G, Li M, Luo H, Dong Q-L, Yao Y-X, You C-X, Hao Y-J (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31:713–722

    CAS  PubMed  Google Scholar 

  • Huang N, Chiang C, Crawford NM, Tsay Y-F (1996) CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183–2191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, Li J, De Morales PA, Belver A, Rodríguez-Rosales MP (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ 35:1467–1482

    CAS  PubMed  Google Scholar 

  • Jacobs B, Pearson C (1999) Growth, development and yield of rice in response to cold temperature. J Agron Crop Sci 182:79–88

    Google Scholar 

  • Jannesar M, Razavi K, Saboora A (2014) Effects of salinity on expression of the salt overly sensitive genes in Aeluropus lagopoides. Aust J Crop Sci 8:1–8

    Google Scholar 

  • Kim B-G, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    CAS  PubMed  Google Scholar 

  • Kleist TJ, Spencley AL, Luan S (2014) Comparative phylogenomics of the CBL–CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front Plant Sci 5:1–17

    Google Scholar 

  • Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL–CIPK signaling networks. Plant Physiol 134:43–58

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay Y-F (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273

    CAS  PubMed  Google Scholar 

  • Kushwaha HR, Kumar G, Verma PK, Singla-Pareek SL, Pareek A (2011) Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Plant Physiol Biochem 49:996–1004

    CAS  PubMed  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C (1996) Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J 9:195–203

    CAS  PubMed  Google Scholar 

  • Lee SC, Lan W-Z, Kim B-G, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA 104:15959–15964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Kim B-G, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li D, Song S, Xia X, Yin W (2012a) Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tissue Organ Cult 109:477–489

    CAS  Google Scholar 

  • Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012b) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35:1582–1600

    CAS  PubMed  Google Scholar 

  • Li Z-Y, Xu Z-S, He G-Y, Yang G-X, Chen M, Li L-C, Ma Y-Z (2012c) Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Biochem Biophys Res Commun 427:731–736

    CAS  PubMed  Google Scholar 

  • Li D-D, Xia X-L, Yin W-L, Zhang H-C (2013) Two poplar calcineurin B-like proteins confer enhanced tolerance to abiotic stresses in transgenic Arabidopsis thaliana. Biol Plant 57:70–78

    CAS  Google Scholar 

  • Li J, Long Y, Qi GN, Xu ZJ, Wu WH, Wang Y (2014a) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1–CIPK23 complex. Plant Cell 26:3387–3402

  • Li Q, Fan L, Luo Q, He H, Zhang J, Zeng Q, Li Y, Zhou W, Huang Z, Deng H, Qi Y (2014b) Co-overexpression of AtCBL9, AtCIPK23 and AtAKT1 enhances K+ uptake of sugarcane under low-K+ stress. Plant Omics 7:188–194

    Google Scholar 

  • Liu J, Zhu J (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94:14960–14964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu K, Huang C, Tsay Y (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu L-L, Ren H-M, Chen L-Q, Wang Y, Wu W-H (2013) A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol 161:266–277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lv F, Zhang H, Xia X, Yin W (2014) Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica. Plant Cell Rep 33:807–818

    CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64:2779–2791

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma D-M, Xu W-R, Li H-W, Jin F-X, Guo L-N, Wang J, Dai H-J, Xu X (2014) Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma 251:219–231

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maierhofer T, Diekmann M, Offenborn JN, Lind C, Bauer H, Hashimoto K, Al-Rasheid KAS, Luan S, Kudla J, Geiger D, Hedrich R (2014) Site-and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal 7:1–12

    Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    PubMed Central  PubMed  Google Scholar 

  • Munns R, Schachtman D, Condon A (1995) The significance of a two-phase growth response to salinity in wheat and barley. Funct Plant Biol 22:561–569

    CAS  Google Scholar 

  • Nieves-Cordones M, Caballero F, Martínez V, Rubio F (2012) Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress. Plant Cell Physiol 53:423–432

    CAS  PubMed  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu J-K (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olías R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916

    PubMed  Google Scholar 

  • Pandey GK, Cheong H, Kim K, Grant JJ, Li L, Hung W, Angelo CD, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey GK, Cheong YH, Kim B-G, Grant JJ, Li L, Luan S (2007) CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res 17:411–421

    CAS  PubMed  Google Scholar 

  • Pandey GK, Grant JJ, Cheong YH, Kim B-G, Li LG, Luan S (2008) Calcineurin B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant 1:238–248

    CAS  PubMed  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    CAS  PubMed  Google Scholar 

  • Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu Q-S, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu J-K (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279:207–215

    CAS  PubMed  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao X-L, Zhang X-H, Li R-J, Shi H-T, Lu Y-T (2011) A calcium sensor-interacting protein kinase negatively regulates salt stress tolerance in rice (Oryza sativa). Funct Plant Biol 38:441–450

    CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Ren X-L, Qi G-N, Feng H-Q, Zhao S, Zhao S-S, Wang Y, Wu W-H (2013) Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J 74:258–266

    CAS  PubMed  Google Scholar 

  • Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot 62:1201–1216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy SJ, Huang W, Wang XJ, Evrard A, Schmöckel SM, Zafar ZU, Tester M (2013) A novel protein kinase involved in Na+ exclusion revealed from positional cloning. Plant Cell Environ 36:553–568

    CAS  PubMed  Google Scholar 

  • Rudd J, Franklin-Tong V (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    CAS  Google Scholar 

  • Saadia M, Jamil A, Ashraf M, Akram NA (2013) Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance. Appl Biochem Biotechnol 170:980–987

    CAS  PubMed  Google Scholar 

  • Sairam R, Rao K, Srivastava G (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper J (1999) Communicating with calcium. Plant Cell 11:691–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JH (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–418

    Google Scholar 

  • Sandmann M, Skłodowski K, Gajdanowicz P, Michard E, Rocha M, Gomez-Porras JL, González W, Corrêa LGG, Ramírez-Aguilar SJ, Cuin TA, van Dongen JT, Thibaud J-B, Dreyer I (2011) The K+ battery-regulating Arabidopsis K+ channel AKT2 is under the control of multiple post-translational steps. Plant Signal Behav 6:558–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi H, Lee B, Wu S, Zhu J (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–87

    CAS  PubMed  Google Scholar 

  • Sun Z, Qi X, Li P, Wu C, Zhao Y, Zhang H, Wang Z (2008) Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. J Plant Biol 51:25–34

    CAS  Google Scholar 

  • Szyroki A, Ivashikina N, Dietrich P, Roelfsema M, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98:2917–2921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang R-J, Liu H, Bao Y, Lv Q-D, Yang L, Zhang H-X (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380

    CAS  PubMed  Google Scholar 

  • Tang R-J, Liu H, Yang Y, Yang L, Gao X-S, Garcia VJ, Luan S, Zhang H-X (2012) Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res 22:1650–1665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang R-J, Yang Y, Yang L, Liu H, Wang C-T, Yu M-M, Gao X-S, Zhang H-X (2014) Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. Plant Cell Environ 37:573–588

    CAS  PubMed  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6: a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

    CAS  PubMed  Google Scholar 

  • Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65:733–746

    CAS  PubMed  Google Scholar 

  • Wang X, Li J, Zou X, Lu L, Li L, Ni S, Liu F (2010) Ectopic expression of AtCIPK23 enhances tolerance against low-K+ stress in transgenic potato. Am J Potato Res 88:153–159

    Google Scholar 

  • Wang R-K, Li L-L, Cao Z-H, Zhao Q, Li M, Zhang L-Y, Hao Y-J (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135

    CAS  PubMed  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    CAS  PubMed  Google Scholar 

  • Wu SJ, Ding L, Zhu JK (1996) SOS1: a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant Mol Biol 65:1–11

    CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao B-Z, Chen X, Xiang C-B, Tang N, Zhang Q-F, Xiong L-Z (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, Wu W-H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    CAS  PubMed  Google Scholar 

  • Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F, Hong X-H, Zhu J-K, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye C-Y, Xia X, Yin W (2013a) Evolutionary analysis of CBL-interacting protein kinase gene family in plants. Plant Growth Regul 71:49–56

    CAS  Google Scholar 

  • Ye J, Zhang W, Guo Y (2013b) Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant Cell Rep 32:139–148

    CAS  PubMed  Google Scholar 

  • Zeng L, Shannon M (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Google Scholar 

  • Zhang H, Yin W, Xia X (2008) Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul 56:129–140

    CAS  Google Scholar 

  • Zhang H, Lv F, Han X, Xia X, Yin W (2013) The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep 32:611–621

    CAS  PubMed  Google Scholar 

  • Zhang H, Yang B, Liu W-Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang Y-Q (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14:8

  • Zhao D, Oosterhuis D, Bednarz C (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109

    CAS  Google Scholar 

  • Zhao J, Sun Z, Zheng J, Guo X, Dong Z, Huai J, Gou M, He J, Jin Y, Wang J, Wang G (2009) Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol 69:661–674

    CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Bi Y, Wang L, Tang L, Yu X, Ohtani M, Demura T, Zhuge Q (2014) Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Report 32:185–197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart John Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoday-Kennedy, E.L., Jacobs, A.K. & Roy, S.J. The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress. Plant Growth Regul 76, 3–12 (2015). https://doi.org/10.1007/s10725-015-0034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0034-1

Keywords

Navigation