Skip to main content

Advertisement

Log in

Intraspecific responses of Fagopyrum esculentum to enhanced ultraviolet B radiation

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of supplemental UV-B radiation on crop growth, morphology, reproduction and physiology were studied in three cultivars of Fagopyrum esculentum Moench (buckwheat) originating from high elevation (Qinghai-Tibet plateau) and lower altitudes (The Sichuan Basin). Our results showed that common buckwheat was sensitive to UV-B stress. Plant growth, development, and reproduction were inhibited by elevated UV-B radiation. Plant lipid oxidation and polyphenol oxidase (PPO) activity increased with increasing UV-B radiation, along with the concentration of phenylpropanoid compounds, superoxide dismutase (SOD) activity and ascorbic acid (Asa) concentration were also enhanced at the lowest level of supplemental UV-B radiation but decreased at the higher level of enhanced UV-B. While, a cultivar originating from elevated locations had lower dry matter accumulation and was more tolerant to UV-B radiation than cultivars originating from lower elevations. The effects on leaf thickness and increased antioxidant capacity could be linked with the improved performance of cultivar originating from high elevation when exposed to enhanced UV-B radiation. We conclude that UV-B tolerance should be considered prior to introducing or breeding common buckwheat cultivars from lowland cultivation to regions at high elevation such as the Qinghai-Tibet plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balakumar T, Gayathri B, Anbudurai PR (1997) Oxidative stress injury in tomato plants induced by supplemental UV-B radiation. Biol Plant 39:215–221. doi:10.1023/A:1000388719570

    Article  CAS  Google Scholar 

  • Bian J, Wang G, Qi D, Lu D, Zhou X (2006) Ozone mini-hole occurring over the Tibetan Plateau in December 2003. Chin Sci Bull 51:885–888. doi:10.1007/s11434-006-0885-y

    Article  CAS  Google Scholar 

  • Bonjoch NP, Tamayo PR (2003) Protein content quantification by Bradford Method. In: Manuel J, Roger R et al (eds) Handbook of plant ecophysiology techniques. Springer, Netherlands, pp 283–295

    Chapter  Google Scholar 

  • Caldwell MM (1971) Solar UV radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–177

    Google Scholar 

  • Casati P, Andreo CS (2001) UV-B and UV-C induction of NADP-malic enzyme in tissues of different cultivars of Phaseolus vulgaris (bean). Plant Cell Environ 24:621–630. doi:10.1046/j.1365-3040.2001.00710.x

    Article  CAS  Google Scholar 

  • Cooley NM, Higgins JT, Holmes MG, Attridge TH (2001) Ecotypic differences in responses of Arabidopsis thaliana L. to elevated polychromatic UV-A and UV-B+A radiation in the natural environment: a positive correlation between UV-B+A inhibition and growth rate. J Photochem Photobiol B Biol 60:143–150. doi:10.1016/S1011-1344(01)00140-3

    Article  CAS  Google Scholar 

  • Correia CM, Areal ELV, Torres-Pereira MS, Torres-Pereira JMG (1998) Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions. I. Growth and morphological aspects. Field Crops Res 59:81–89. doi:10.1016/S0378-4290(98)00102-6

    Article  Google Scholar 

  • Dai QJ, Peng SB, Chavez AQ, Vergara BS (1994) Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ Exp Bot 34:422–433. doi:10.1016/0098-8472(94)90026-4

    Article  Google Scholar 

  • Delpérée C, Kinet JM, Lutts S (2003) Low irradiance modifies the effect of water stress on survival and growth-related parameters during the early developmental stages of buckwheat (Fagopyrum esculentum). Physiol Plant 119:211–220. doi:10.1034/j.1399-3054.2003.00170.x

    Article  Google Scholar 

  • Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J (eds) Climate change 2001: the scientific basis. Contributions of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, 881 pp

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431. doi:10.1016/0076-6879(90)86135-I

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Lu Y, Yin C, Junttila O, Li C (2005) Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiol Plant 124:476–484. doi:10.1111/j.1399-3054.2005.00535.x

    Article  CAS  Google Scholar 

  • Gaberščik A, Vončina M, Trošt T, Germ M, Björn LO (2002) Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. J Photochem Photobiol B Biol 66:30–36. doi:10.1016/S1011-1344(01)00272-X

    Article  Google Scholar 

  • Halbrecq B, Romedenne P, Ledent JF (2005) Evolution of flowering, ripening and seed set in buckwheat (Fagopyrum esculentum Moench): quantitative analysis. Eur J Agron 23:209–224. doi:10.1016/j.eja.2004.11.006

    Article  Google Scholar 

  • Hofmann RW, Campbell BD, Fountain DW, Jordan BR, Greer DH, Hunt DY et al (2001) Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant Cell Environ 24:917–927. doi:10.1046/j.1365-3040.2001.00749.x

    Article  Google Scholar 

  • Huang S, Dai Q, Peng S, Chavez A, Miranda MLL, Visperas R et al (1997) Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice (Oryza sativa L.). Plant Growth Regul 21:59–64. doi:10.1023/A:1005777125940

    Article  CAS  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2003) Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radical generating compound AAPH. Plant Sci 165:551–557. doi:10.1016/S0168-9452(03)00214-0

    Article  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135. doi:10.1016/S1360-1385(98)01215-1

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218. doi:10.1016/j.agrformet.2003.08.015

    Article  Google Scholar 

  • Kreft S, Štrukelj B, Gaberščik A, Kreft I (2002) Rutin in buckwheat herbs grown at different UV-B radiation level: comparison of two UV spectrophotometric and an HPLC method. J Exp Bot 53:1801–1804. doi:10.1093/jxb/erf032

    Article  PubMed  CAS  Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166. doi:10.1104/pp. 109.4.1159

    Article  PubMed  CAS  Google Scholar 

  • Larcher E (1995) Physiological plant ecology. Springer, Berlin

    Google Scholar 

  • Lei Y, Korpelainen H, Li C (2007) Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68:686–694. doi:10.1016/j.chemosphere.2007.01.066

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zu YQ, Chen H, Chen J, Yang J, Hu Z (2000) Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Field Crops Res 67:25–33. doi:10.1016/S0378-4290(00)00080-0

    Article  Google Scholar 

  • Madronich S, Mckenzie RL, Caldwell MM, Bjorn LO (1995) Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24:143–153

    Google Scholar 

  • Musil CF (1995) Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledons and monocotyledonous arid-environment ephemerals. Plant Cell Environ 18:844–854. doi:10.1111/j.1365-3040.1995.tb00593.x

    Article  CAS  Google Scholar 

  • Panagopoulos L, Bornman JF, Björn LO (1990) Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultra weak luminescence and peroxidase activity in sugar beet plants. J Photochem Photobiol B 8:73–87. doi:10.1016/1011-1344(90)85189-4

    Article  CAS  Google Scholar 

  • Papadopoulos YA, Gorden RJ, McRae KB, Bush RS, Belanger G, Butler EA et al (1995) Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions. Physiol Plant 94:37–44. doi:10.1111/j.1399-3054.1995.tb00781.x

    Article  Google Scholar 

  • Poggio SL, Satorre EH, Dethiou S, Gonzalo GM (2005) Pod and seed numbers as a function of photothermal quotient during the seed set period of field pea (Pisum sativum) crops. Eur J Agron 22:55–69. doi:10.1016/j.eja.2003.12.003

    Article  Google Scholar 

  • Schmitz-Hoerner R, Weissenböck G (2003) Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochem 64:243–255. doi:10.1016/S0031-9422(03)00203-6

    Article  CAS  Google Scholar 

  • Sullivan JH, Teramura AH (1990) Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol 92:141–146

    Article  PubMed  Google Scholar 

  • Teramura AH, Sullivan JH (1991) Potential impacts of increased solar UV-B on global plant productivity. In: Riklis E (ed) Photobiology. Plenum Press, New York, pp 625–634

    Google Scholar 

  • UNEP (2006) Executive summary of the scientific assessment of ozone depletion: 2006 prepared by WMO/UNEP (released 18 August 2006)

  • Yang Y, Yao Y, Xu G, Li C (2005) Growth and physiological responses to drought and elevated ultraviolet-B in two contrasting populations of Hippophae rhamnoides L. Physiol Plant 124:431–440. doi:10.1111/j.1399-3054.2005.00517.x

    Article  CAS  Google Scholar 

  • Yao Y, Xuan Z, Li Y, He Y, Korpelainen H, Li C (2006a) Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. Eur J Agron 25:215–222. doi:10.1016/j.eja.2006.05.004

    Article  CAS  Google Scholar 

  • Yao Y, Zu Y, Li Y (2006b) Effects of quercetin and enhanced UV-B radiation on the soybean (Glycine max) leaves. Acta Physiol Plant 28:49–57. doi:10.1007/s11738-006-0068-0

    Article  Google Scholar 

  • Yao Y, Xuan Z, He Y, Lutts S, Korpelainen H, Li C (2007) Principal component analysis of intraspecific responses of tartary buckwheat to UV-B radiation under field conditions. Environ Exp Bot 61:237–245. doi:10.1016/j.envexpbot.2007.06.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the critical reading and suggestions given by professor C. J. Atkinson and anonymous reviewers of an earlier version. The research was supported by the Outstanding Young Scientist Program of the National Natural Science Foundation of China (No. 30525036), Guizhou natural science foundation (No. 20072057) and Guizhou University talent foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Yang, Y., Li, Y. et al. Intraspecific responses of Fagopyrum esculentum to enhanced ultraviolet B radiation. Plant Growth Regul 56, 297–306 (2008). https://doi.org/10.1007/s10725-008-9309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9309-0

Keywords

Navigation