Skip to main content
Log in

Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of cadmium (Cd) stress on lipid composition and biosynthesis were investigated in young leaves of ten-day-old tomato seedlings (Lycopersicon esculentum Mill. cv. Ibiza F1). Cd was found to be mainly accumulated in roots, but a severe inhibition of biomass production occurred in leaves, even at its low concentration (1.0 μM). Seven days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Likewise, there was also a decline in the levels of tri-unsaturated fatty acids, such as linolenic (C18:3) and hexadecatrienoic (C16:3) acids. The linolenic acid (C18:3) decreased in monogalactosyldiacylglycerol (MGDG) and all phospholipids, while hexadecatrienoinic acid (C16:3) declined mainly in MGDG. Moreover, Cd at high concentrations (25.0 and 50.0 μM) significantly enhanced the levels of lipid peroxides. Radiolabelling experiments were carried out by laying down microdroplets of [1-14C]acetate–a major precursor of lipid biosynthesis–on attached leaves of the control and Cd-treated plants. After incubation for 1, 2, 12 and 24 h, the leaves were harvested and lipids extracted and analysed. Cd stress was found to decrease the incorporation of [1-14C]acetate in total lipids. The biosynthesis of total lipids was altered with 25.0 and 50.0 μM Cd. The decline in the incorporation of [1-14C]acetate due to Cd stress was observed in all lipid classes. There was also a substantial decline in the incorporation of [1-14C]acetate in tri-unsaturated fatty acids. The results indicate that Cd treatment induces an oxidative stress by inhibiting the chloroplastic and extrachloroplastic lipid-biosynthesis pathways as well as lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DGDG :

Digalactosyldiacylglycerol

DM :

Dry mass

GL:

Galactolipids

LOX:

Lipoxygenase

MGDG:

Monogalactosyldiacylglycerol

NL:

Neutral lipids

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PL:

Phospholipids

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

TL:

Total lipids

References

  • Alia KVSK, Prasad P, Pardha Saradhi P (1995) Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 42:45–47

    Article  Google Scholar 

  • Allen C, Good P (1971) Acyl lipid in photosynthetic systems. Method Enzymol 23:523–547

    Article  CAS  Google Scholar 

  • Artetxe U, Garcia-Plazaola JI, Hernandez A, Becerril JM (2002) Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiol Biochem 40:859–863

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant 48:365–370

    Article  CAS  Google Scholar 

  • Bazzaz FA, Rolfe GL, Carison RW (1992) Effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol Plant 32:373–377

    Article  Google Scholar 

  • Ben Ammar W, Nouairi I, Tray B, Zarrouk M, Jemal F, Ghorbel MH (2005) Effets du cadmium sur l’accumulation ionique et les teneurs en lipides dans les feuilles de tomate (Lycopersicon esculentum). J Soc Biol 199:157–163

    PubMed  CAS  Google Scholar 

  • Ben Youssef N, Ben Miled Daoud D, Zarrouk M, Cherif A, Ghorbel MH (2003) Effets du cadmium sur la composition en lipides foliaires de plantules de colza (Brassica napus L.). Riv Ital Sostanz Grass 130:165–170

    Google Scholar 

  • Ben Youssef N, Nouairi I, Ben Temime S, Taamalli W, Zarrouk M, Ghorbel MH, Ben Miled Daoud D (2005) Effets du cadmium sur le métabolisme des lipides de plantules de colza (Brassica napus L.). C R Biol 328:745–757

    Article  PubMed  CAS  Google Scholar 

  • Chaffei C, Gouia H, Masclaux C, Ghorbel MH (2003) Réversibilité des effets du cadmium sur la croissance et l’assimilation de l’azote chez la tomate (Lycopersicon esculentum). C R Biol 326:401–412

    Article  PubMed  CAS  Google Scholar 

  • Cumming JR, Taylor CJ (1990) Mechanisms of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm. In: Allen NS (ed) Stress responses in plants: adaptation and acclimation. Wiley-Liss, New York, pp 328–356

    Google Scholar 

  • Djebali W, Chaïbi W, Ghorbel MH (2002) Croissance, activité peroxydasique et modifications ultrastructurales induites par le cadmium dans la racine de tomate. Can J Bot 80:942–953

    Article  CAS  Google Scholar 

  • Djebali W, Chaïbi W, Ghorbel MH (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:1–11

    Article  CAS  Google Scholar 

  • Douce R (1964) Identification et dosage de quelques glycérophosphatides dans des souches normales et tumorales de scosonères cultivés in vitro. C R Acad Sci 259:3066–3068

    CAS  Google Scholar 

  • Fargašová A (2004) Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil Environ 50:33–38

    Google Scholar 

  • Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Thypha latifolia. J Plant Physiol 159:265–271

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gouia H, Suzuki A, Brultfert J, Ghorbel MH (2003) Effects of cadmium on the coordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376

    Article  PubMed  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2002) Lipid metabolism in the moss Rhytidiadeiphus squarrosus (Hedw) Warnst. from lead-contaminated and non-contaminated populations. J Exp Bot 53:455–463

    Article  PubMed  CAS  Google Scholar 

  • Jemal F, Daoud Ben Miled D, Zarrouk M, Ghorbel MH (2002) Relation entre la composition en lipides membranaires et la tolérance au cadmium chez le piment. Riv Ital Sostanz Grass 119:399–405

    Google Scholar 

  • Jones AL, Harwood JL (1993) Lipid metabolism in the brown marine algae Fucus vesiculosus and Ascophyllum nodosum. J Exp Bot 44:1203–1210

    Article  CAS  Google Scholar 

  • Lepage M (1967) Identification and composition of turp in root lipids. Lipids 2:244–250

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe D, Shmitz A, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:524–535

    Article  Google Scholar 

  • Murata N, Higashi SI, Fujimura Y (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268

    Article  CAS  Google Scholar 

  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled Daoud D, Ghorbel MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 130:165–170

    Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbel MH (1997) Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Pinzino C, Sgherri CLM, Della Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108:87–93

    Article  CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Schűtzendűbel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Skórzyńska-Polit E, Urbanik-Sypniewska T, Russa R, Baszynski T (1991) Galactolipase activity of chloroplasts in cadmium-treated runner bean plants. J Plant Physiol 138:454–459

    Google Scholar 

  • Skórzyńska-Polit E, Krupa Z (2003) The activity of lipoxygenase in Arabidopsis thaliana (L.) Huynh—a preliminary study. Cell Mol Biol Lett 8:279–284

    PubMed  Google Scholar 

  • Skórzyńska-Polit E, Pawlikowska-Pawlęga B, Szczuka E, Drążkiewicz M, Krupa Z (2006) The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regul 48:29–39

    Article  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  PubMed  CAS  Google Scholar 

  • Sobkowiak R, Rymer K, Ruciniska R, Deckert J (2004) Cadmium-induced changes in antioxidant enzyme in suspension culture of soybean cells. Acta Biochem Polon 51:219–222

    CAS  Google Scholar 

  • Stefanov K, Popva L, Nikolova-Damyanova B, Kimenov G, Popov S (1992) Lipid and sterol changes in Phaseolus vulgaris caused by lead ions. Phytochemistry 31:3745–3748

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wided Ben Ammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Ammar, W., Nouairi, I., Zarrouk, M. et al. Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Plant Growth Regul 53, 75–85 (2007). https://doi.org/10.1007/s10725-007-9203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9203-1

Keywords

Navigation