Skip to main content
Log in

Effectiveness and efficiency of Monosodium Glutamate as a potential mutagen inducing polyploidy in Drimia indica (Roxb.) Jessop

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Monosodium Glutamate is a well-known food additive with widespread usage in food industries. Contrary to that it has long been used as a cheap source of fertilizer owing to the presence of high nitrogen contents in it. Moreover, it also shows genotoxic effects on plants. However, its potential as a mutagen has never been established. Hence, the present research was extended not only to explore the genotoxic properties of Monosodium Glutamate but also to access its potential in induction of polyploidy in plants. For this a medicinal plant, Drimia indica (Roxb.) Jessop with immensely high therapeutic value was selected. This plant belongs to the Liliaceae family hence its chromosomes are comparatively larger in size which made it fit for such studies. Consequently, the fresh bulbs of the Drimia indica (Roxb.) Jessop were collected and then treated with five different concentrations of Monosodium Glutamate. In order to evaluate the mutational changes in the chromosomes of the plant two consecutive generations of the plants were raised and was designated as Mutant Generation one (M1) and Mutant Generation two (M2) respectively. Afterwards, the data were recorded for both the generations, based on that, the effectiveness and efficiency of Monosodium Glutamate on Drimia indica (Roxb.) Jessop were investigated through comparative studies. Many chromosomal aberrations were observed in both the generations, but the higher numbers of polyploidy were recorded in the M2 population. The finding thus obtained could be used as evidence for the consideration of Monosodium Glutamate as a potential mutagen for inducing polyploidy among the plants, primarily through well-maintained experimental setup with controlled and adequate dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbas S, Bashir S, Khan A, Mehmood MH, Gilani AH (2012) Gastrointestinal stimulant effect of Urginea indica Kunth. and involvement of muscarinic receptors. Phytother Res 26:704–708

    Article  CAS  PubMed  Google Scholar 

  • Abraham S, Kosly MP (1979) Mutagenic potential of green chilies. Cytologia 44(1):221–225

    Article  Google Scholar 

  • Acharya SN, Basu SK, Thomas JE, Acharya SN, Thomas JE (2007) Methods for the improvement of plant medicinal properties with particular reference to fenugreek (Trigonella foenum-graecum L.). Adv Med Plant Res 1:491–512

    Google Scholar 

  • Adam ZM, Rashad TR (1984) Cytological effects of water extract of medical plants. Influence of Ammi majus extract on root tips of Vicia faba. Cytologia 49:265–271

    Article  Google Scholar 

  • Adamu AK, Aliyu H (2007) Morphological effects of sodium azide on tomato (Lycopersicon esculentum Mill). Sci World J 2(4):9–12

    Google Scholar 

  • Airy Shaw HK (1966) A Dictionary of flowering plants and freus. Eighth edition. Willis JSED Cambridge University press Cambridge

  • Alam H, Razaq MS (2015) Induced polyploidy as a tool for increasing tea (Camellia sinensis L.) production. Northeast Agric Univ 22:43–47

    Google Scholar 

  • Albertini RJ, Aderson D, Dauglas GR, Hagmar L, Hemminki K, Merlo F, Natrajan AT, Norppa H, Shuker DEG, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in human. Mutat Res 463:111–172

    Article  CAS  PubMed  Google Scholar 

  • Amer SM, Ali EM (1974) Cytological effects of pesticides V. Effects of some herbicides on Vicia faba. Cytologia. 39:633

    Article  CAS  Google Scholar 

  • Amer SM, Ali EM (1983) Cytological effects of pesticides XVII. Effects of insecticide dichlorvas on root mitosis of Vicia faba. Cytologia 51:21–25

    Article  Google Scholar 

  • Amiri S, Kazemitabaar S, Ranjbar K, Azadbakht M (2010) The effect of trifluralin and colchicine treatments on morphological characteristics of jimsonweed. Trakia J Sci 8:47–61

    Google Scholar 

  • Arias E (1996) Effects of the phenoxy herbicide MCPA on SCE frequency and cell kinetics in developing chick Embryos. Ecotoxicol Environ Saf 33(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Arisha MH, Liang BK, Shah SNM, Gong ZH, Li DW (2014) Kill curve analysis and response of first generation Capsicum annuum L. B12 cultivar to ethyl methane sulfonate. Genet Mol Res 13:10049–10061. https://doi.org/10.4238/2014.November.28.9

    Article  CAS  PubMed  Google Scholar 

  • Aubrbach C, Robson JM (1946) Chemical production of mutations. Nature Lond 157:302

    Article  Google Scholar 

  • Auerbach C (1946) Chemically induced mosaicism in Drosophila melanogaster. Proc Ray, SOC Edinb B. 62:211

    CAS  Google Scholar 

  • Babich H, Segall MA, Fox KD (1997) The Allium test — a simple, eukaryote genotoxicity assay. Am Biol Teach 59(9):580–583

    Article  Google Scholar 

  • Bashir S, Abbas S, Khan A, Gilani AH (2013) Studies on bronchodilator & cardiac stimulant activities of U. indica. Bangla J Pharmacol 8:249–254

    Article  Google Scholar 

  • Battaglia FC (2000) Glutamine and glutamate exchange between the fetal liver and the placenta. J Nutr 130:974S-S977

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj DN (2015) Plant biology and biotechnology: polyploidy in crop improvement and evolution. Springer, New Dehli, India, pp 619–638

    Book  Google Scholar 

  • Blixt S (1964) Studies on induced mutations in peas VIII Ethylene imine and gamma rays treatment of the variety Witham wonder. Agric Hort Genet 22:171–183

    Google Scholar 

  • Borah SP, Talukdar J (2002) Studies on the cytotoxic effects of extracts of castor seed (Ricinus communis L.). Cytologia 67:235–243

    Article  Google Scholar 

  • Caperta AD, Delgado M, Ressurreição F, Meister A, Jones RN, Viegas W, Houben A (2006) Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma 227:147–153. https://doi.org/10.1007/s00709-005-0137-z

    Article  CAS  PubMed  Google Scholar 

  • Çelik TA, Aslantürk ȌS (2010) Evaluation of Cytotoxicity and Genotoxicity of Inula viscosa Leaf extracts with Allium Test. J Biomed Biotech. https://doi.org/10.1155/2010/189252

    Article  Google Scholar 

  • Chauhan N, Chauhan AKS (1999) Genotoxicity of fluoroquinolones in Allium cepa test system. J Cytol Genet 34:153–160

    Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836–846

    CAS  Google Scholar 

  • Darlington CD, Mc LL (1951) Action of maleic hydrazide on the cell. Nature 167:407–408

    Article  CAS  PubMed  Google Scholar 

  • Das NT, Raj SA, Rao RBV (1968) Cytological studies in Vicia faba L. treated with asafactida. Cytologia 33:100–111

    Article  Google Scholar 

  • Deb DB, Dasgupta S (1976) Studies on Indian squill Urginea indica. J Crude Drug Res 14:49–60

    Article  CAS  Google Scholar 

  • Deepak AV, Salimath BP (2006) Antiangiogenic and proapoptotic activity of a novel glycoprotein from Urginea indica is mediated by NFkappa B and Caspase activated DNase in ascites tumor model. Biochimie 88:297–307

    Article  CAS  PubMed  Google Scholar 

  • Dipa M, Prasad SA, Sharma HP (2018) Phytochemical and antioxidant evaluation of Urginea indica Kunth. Indian J Traditi Knowl 17(4):783–788

    Google Scholar 

  • Dubinin NP (1961) Problems of radiation genetics. Oliver & Boyd, London

    Google Scholar 

  • El-Ghamery AA, El-Nahas AI, Mansour MM (2000) The action of atrazine herbicide as an inhibitor of cell division of chromosomes and nucleic acid contents in root meristems of Allium cepa and Vicia faba. Cytologia 65:277–287

    Article  CAS  Google Scholar 

  • El-Ghamery AA, El-Kholy MA, Abou El-Yousser MA (2003) Evaluation of Cytological effect of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res, Genet Toxicol Environ Mutagen 537:29–40

    Article  CAS  Google Scholar 

  • El-Khodary S, Habib A, Haleim A (1990) Effect of herbicide Tribunil on root mitosis of Allium cepa. Cytologia 55:209–215

    Article  CAS  Google Scholar 

  • Eng WH, Ho WS (2019) Polyploidization using colchicine in horticultural plants: a review. Sci Hortic 246:604–617

    Article  CAS  Google Scholar 

  • Epel D (1963) The effects of carbon monoxide inhibition of ATP level and the date of mitosis in sea urchin egg. J Cell Biol 17:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiskesjo G (1985) Allium test as a standard in environmental monitoring. Hereditas 1–2:99–112

    Google Scholar 

  • Fiskesjo G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wuncheng W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC Lewis Publishers, Boca Raton, pp 307–333

    Chapter  Google Scholar 

  • Fluminhan A Jr, De Aguiar-Perecin MLR, Dos Santos JA (1996) Evidence for heterochromatin involvement in chromosome breakage in maize callus culture. Ann Bot 78:73–81

    Article  Google Scholar 

  • ForsterMM BP and Jankuloski L (2018) Manual on Mutation Breeding Third Edition by Spencer-Lopes. Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna. ISBN 978–92–5–130526–3.

  • Gaikwad NB, Kothekar VS (2004) Mutagenic effectiveness and efficiency of ethyl methane sulphonate and sodium azide in lentil (Lens culinaris Medik). Indian J Genet 64(1):73–74

    Google Scholar 

  • Gecheff KI (1996) Production and identification of new structural chromosome mutations in barley (Hordeum vulgare L). Theor Appl Genet 92(6):777–781

    Article  CAS  PubMed  Google Scholar 

  • Germain TA (2019) Racist little hat: The MSG debate and American culture. Columbia Undergrad Res J. https://doi.org/10.7916/D8MG7VVN

    Article  Google Scholar 

  • Goldblatt P (1980) Polyploidy in angiosperms. In: Lewis WH (ed) Polyploidy—biological relevance. Plenum Press, New York, NY, pp 219–239

    Chapter  Google Scholar 

  • Gomurgen AN (2005) Cytological effect of potassium metabisulphite and potassium nitrate food preservative on root tips of Allium cepa L. Cytologia 70:119–128

    Article  Google Scholar 

  • Grant WF (1978) Chromosome aberrations in plants as a monitoring system. Environ Health Prospect 27:37–43

    Article  CAS  Google Scholar 

  • Grover IS, Kaur S (1999) Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assays. Mutat Res 426:183–188

    Article  CAS  PubMed  Google Scholar 

  • Grundmann E (1966) General Cytology. London. pp. 428.

  • Haleim AS (1990) Cytological effects of the herbicide Sencor on mitosis of Allium cepa. Egypt J Bot 33:93–104

    Google Scholar 

  • Hall EJ, Garcia AJ (2006) Radiobiology for the radiobiologist, 6th edn. Lippincot Williams and Wilkins, Philadelphia, p 656

    Google Scholar 

  • Harini SS, Leelambika M, Shiva Karmeswari MN, Satyanarayana N (2008) Optimization of DNA isolation and PCR-RAPD methods for molecular analysis of Urginea indica Kunth. Int J Integ Bio 2:138–144

    Google Scholar 

  • Hassan L, Ahmad SD (2000) Chromosomal aberrations induced by chemical mutagens in Allium. Pak J Biol Sci 3(7):1187–1189

    Article  Google Scholar 

  • Hilada N, Jasmin M, Azra M, Kemajl K (2013) Chromosomal and nuclear alterations in root tip cells of Allium Cepa L. induced by Alprazolam chemosphere. Med Arh. https://doi.org/10.5455/medarh.2013.67.388-392

    Article  Google Scholar 

  • Ignacimuthu S, Babu CR (1989) Induced chromosomal abnormalities and pollen sterility in wild and cultivated Urd and Mungbean. Cytologia 54:159–167

    Article  Google Scholar 

  • Jain AK, Andsorbhoy RK (1988) Cytogenetical studies on the effects of some chlorinated pesticides III. Concluding Remarks Cytologia 53:427–436

    Article  CAS  Google Scholar 

  • Jaskani MJ, Kwon SW, Kim DH (2005) Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica 145:259–268

    Article  CAS  Google Scholar 

  • Jyotirmoy S, Rajkumari JD, Ingtipi W, Rakesh B, Shivani D (2018) Effect of chemical mutagens on chromosomal behavior of Allium cepa L. Ann Plant Sci 7(4):2202–2204

    Article  Google Scholar 

  • Niaz K, Zaplatic E, Spoor J (2018) Extensive use of Monosodium Glutamate: A Threat to Public Health? EXCLI Journal. doi: https://doi.org/10.17179/excli2018-1092.

  • Kamble VR, Dinesh AG, Ghansham DB (2012) Incidence of arbuscular mycorrhizal fungi in Indian squill: Drimia indica from coastal sand dunes of Konkan, India. J Pharm Biol Sci 4(3):31–36

    Google Scholar 

  • Kanagaraj VS, Priya V, Gayathri R (2018) Effects of monosodium glutamate on the Indian population. Drug Invent Today. 10:1860–64

    Google Scholar 

  • Kannan M, Vanitha J, Jiang S, Ramachandran S (2013) Impact of colchicine treatment on Sorghum bicolor BT × 623. Mol Plant Breed 4:128–135

    Google Scholar 

  • Karimzadeh G (2015) In vitro polyploidy induction: Changes in morphological, anatomical and phytochemical characteristics of Thymus persicus esponsible for evolution (Lamiaceae). Plant Cell Tissue Organ Cult 122:573–583

    Article  Google Scholar 

  • Kaymak F (2005) Cytogenetic effect of maleic hydrazide on Helianthus annus L. Pakistan J Biol Sci 8(1):104–108

    Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 33–38

    Google Scholar 

  • Khatab HA, Elhaddad NS (2015) Evaluation of mutagenic effects of monosodium glutamate using Allium cepa and antimutagenic action of Origanum majorana L and Ruta chalepensis Medical Plants. British Biotechnol J 8(1):1–11. https://doi.org/10.9734/BBJ/2015/17695

    Article  Google Scholar 

  • Kim JC, Bendixen EL (1987) Effect of haloxyfop and CGA82725 on ciss cycle and cell division of oat (Avena sativa) root tips. Weed Sci 35:769–774

    Article  CAS  Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Meth Mol Biol 236:189203

    Google Scholar 

  • Konzak CF, Wagner T, Foster RJ (1965) Efficient chemical mutagenesis, the use of induced mutations in Plant Breeding (Rep. FAO/IAEA Tech. Meeting Rome, 1964). Porgamon Press. pp - 49–70.

  • Kraboun K, Tochampa W, Chatdamrong W, Kongbangkerd T (2013) Effect of monosodium glutamate and peptone on antioxidant activity of monascal waxy corn. Int Food Res J 20(2):623

    Google Scholar 

  • Krishna G, Hayashi M (2000) In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat Res 455(1–2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mani SC (1997) Chemical mutagenesis in Manhar variety of rice (Oryza sativa L). India J Genet Plant Breed 57(2):120–126

    CAS  Google Scholar 

  • Kumar LP, Panneerselvam N (2007) Cytogenetic studies of food preservative in Allium cepa root meristem cells. Med Biol 14(2):60–63

    Google Scholar 

  • Kumar S, Katna G, Sharma N (2019) Mutation breeding in chickpea. Adv Plants Agric Res 9(2):355–362. https://doi.org/10.15406/apar.2019.09.00448

    Article  Google Scholar 

  • Laere KV, França SC, Vansteenkiste H, Huylenbroeck JV, Steppe K, Labeke MCV (2011) Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol Plant 33:1149–1156

    Article  Google Scholar 

  • Laskar RM, Khan S (2017) Mutagenic effectiveness and efficiency of gamma rays and HZ with phenotyping of induced mutations in lentil cultivars. Int Lett Nat Sci. 64:17

    Google Scholar 

  • Lignowski EM, Scott EG (1972) Effect of trifluralin on mitosis. Weed Sci 20:267–270

    Article  CAS  Google Scholar 

  • Loliger J (2000) Function and importance of glutamate for savory foods. J Nutr 130:9158–9220

    Article  Google Scholar 

  • Ma TH, Xu Z, Zu C, McConnel H, Rabago EV, Arreolo GA, Zhang H (1995) The improved Allium/ Vicia root tip micronucleus assay for clastogenecity of the environmental pollutants. Environ Mutagen 334:185–195

    CAS  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity 110:99–104

    Article  CAS  PubMed  Google Scholar 

  • Madon M, Clyde MM, Hasim H, Yusuf M, Mat H, Saratha S (2005) Polyploidy induction of oil palm through colchicine and oryzalin treatments. J Oil Palm Res 17:110–123

    CAS  Google Scholar 

  • Mahabatra, BK (1983) Studies on comparative spectrum and frequency of induced genetic variability in green gram [Vigna radiata (L.) Wilczek]. Ph.D. Thesis, IARI, New Delhi

  • Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C (2019) Studies on Colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8:194. https://doi.org/10.3390/plants8070194

    Article  CAS  PubMed Central  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: Evidence for polyploidy in majority of flowering plants. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Melvin Pellett Harold (1938) Development of techniques for the chemical induction of mutations in vegetative plant material. IOWA State University of Science and Technology Ph.D. (1964) Agriculture, plant culture. University Microfilms Inc, Ann Arbor, Michigan

    Google Scholar 

  • Mesi A, Kopliku D (2013) Cytotoxic and genotoxic potency screening of two pesticides on Allium cepa. Procedia Technol 8:19–26

    Article  Google Scholar 

  • Monica S, Seetharaman N (2017) Mutagens induced chromosomal damage in lablab purpureus (L) Sweet Var typicus. Cytol Genet. https://doi.org/10.3103/S0095452717030100

    Article  Google Scholar 

  • Monti LM (1968) Mutations in peas induced by Diethyl sulphate and X-rays. Mut Res 5:187–191

    Article  CAS  Google Scholar 

  • Nagwa RA, Magda AM, Atef AA, Elham AA (2011) Relative mutagenecity of some food preservatives on plant cells. Aust J Basic Appl Sci 5(12):2817–2826

    Google Scholar 

  • Natarajan AT (1993) Mechanisms for induction of mutations and chromosome alterations. Environ Health Perspect 101:225–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan AT (1958) A cytogenetical study of the effect of mutagen on plant with special reference to the induction. Ph.D. Thesis. IARI, New Delhi

  • Nerkar YS (1977) Mutagenic effectiveness and efficiency of gamma rays, EMS and NMU in Lathyrus sativus L. Ind J Genet PI Breed 37:131–141

    Google Scholar 

  • Nihal GA, Mutlu F, Bozcuk S (2005) Effects of Polyamines (Putrescine, spermidine and spermine) on root tip mitosis and chromosomes in Allium cepa L. Cytologia 70(2):217–224

    Article  Google Scholar 

  • Ninomiya K (1998) Technical committee umami manufacturers association of Japan “Natural occurrence.” Food Rev Int 14:177–211

    Article  CAS  Google Scholar 

  • Novak FJ, Brunner H (1992) Plant breeding: Induced mutation technology for crop improvement. IAEA Bull 4:25–32

    Google Scholar 

  • Okorie Asita A, Moramang S, Rantso T, Magama S (2017) Modulation of mutagen-induced genotoxicity by vitamin C and medicinal plants in Allium cepa L. Caryologia. https://doi.org/10.1080/00087114.2017.1311166

    Article  Google Scholar 

  • Page DR, Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3:124–136. https://doi.org/10.1038/nrg730

    Article  CAS  PubMed  Google Scholar 

  • Pagliarini MS, Pereira MAS (1992) Meiotic studies in Pilocarpus pennatifolius Lem. (Rutaceae). Cytologia 57:231–235

    Article  Google Scholar 

  • Pandey D, Gupta AK (2019) Bioactive Compound in Urginea indica (Kunth.) from Bastar and its Spectral Analysis by HPLC, UV-Vis, FT-IR, NMR, and ESI-MS. SN Compr Clin Med 1:241–254. https://doi.org/10.1007/s42399-018-0039-y

    Article  CAS  Google Scholar 

  • Patil BC, Bhat GI (1992) A comparative study of MH and EMS in the induction of chromosomal aberration on lateral root meristem in Clitoriatematea L. Cytologia 57:295–264

    Article  Google Scholar 

  • Polit JT, Maszewski J, Kazmierczak A (2003) Effect of BAP and IAA on the experssion of G1 and G2 control points and G1-S and G2-M transitions in root meristem cells of Vicia faba. Cell Biol Int 27(7):559–566

    Article  CAS  PubMed  Google Scholar 

  • Prajapati ND, Purohit SS, Sharma AK, Kumar T (2003) A handbook of medicinal plants: a complete source book. New Delhi: Agrobios

  • Prasad MVR (1972) A comparison of mutagenic effectiveness and efficiency of gamma rays, EMS. NMU and NG. Ind J Genet 32:360367

    Google Scholar 

  • Prasath D, Muthu K, Santosh, Surya (2013) Detection of genotoxicity and chromosomal aberrations induced by Furdan and Monosodium Glutamate in Allium cepa L. South Asian J Biol Sci 3(1):11–24. https://doi.org/10.9734/BBJ/2015/17695

    Article  Google Scholar 

  • Rajib Roychowdhury and Jagatpati Tah (2011) Assessment of chemical mutagenic effects in mutation breeding programme for M1 generation of Carnation (Dianthus caryophyllus). Research in Plant Biology. 1(4):23–32. https://www.researchgate.net/publication/215673333.

  • Rathabai V, Baskaran C, Shivmani (2012) Phytochemical analysis and invitro antimicrobial activity of Urginea indica. J Pharmacog Herb Formulations 2:6–12

    Google Scholar 

  • Reddy VRK, Annadurai M (1991) Mutagenic effects of gamma rays, EMS, Sodium Azide and their combined treatments in lentil. The J of Cytology and Genet 26:25–29

    Google Scholar 

  • Renjana PK, Anjana S, John TE (2013) Evaluation of genotoxic effects of baking powder and monosodium glutamate using Allium cepa assay. Int J Pharm Pharm Sci 5(2):311–316

    Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis a potential approach for crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, New York (NY), pp 149–187

    Chapter  Google Scholar 

  • Sajjad Y, Jaskani MJ, Mehmood A, Ahmad I, Abbas H (2013) Effect of colchicine on in vitro polyploidy induction in African marigold (Tagetes erecta). Pak J Bot 45:1255–1258

    CAS  Google Scholar 

  • Sakhanokho HF, Rajasekaran K, Kelley RY, Islam-Faridi N (2009) Induced polyploidy in diploid ornamental ginger (Hedychium muluense RM Smith) using colchicine and oryzalin. Hort Science 44:1809–1814

    Google Scholar 

  • Satnam S, Rekha PD, Arun AB, Chiu-Chung Y (2009) Impacts of monosodium glutamate industrial wastewater on plant growth and soil characteristics. Ecol Eng. 35:1559–1563. https://doi.org/10.1016/j.ecoleng.2009.06.002

    Article  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    Article  CAS  PubMed  Google Scholar 

  • Seman-Kamarulzaman AF, Mohamad MA (2019) The Effects of monosodium glutamate as an alternative fertilizer towards the growth of Zea mays. GADING J Sci Technol 2(02):1–7

    Google Scholar 

  • Semeniuk P, Arisumi T (1968) Colchicine-induced tetraploid and cytochimeral roses. Bot Gaz 129:190–193

    Article  Google Scholar 

  • Sharma A, Sen S (2002) Chromosome botany. Science, Enfield, NH, USA

    Google Scholar 

  • Sharma SK, Sharma B (1979) Mutagenic effectiveness and efficiency of gamma rays and NMU in lentil. Ind J Genet Pl Breed 39:516–520

    CAS  Google Scholar 

  • Shenoy SR, Kameshwari MN, Swaminathan S, Gupta MN (2006) Major antifungal activity from the bulbs of Indian squill Urginea indica. Biotechnol Prog 22:631–637

    Article  CAS  PubMed  Google Scholar 

  • Shirsat RK, Mohrir MN, Kare MA, Bhuktar AS (2010) Induced mutations in Horsegram: mutagenic efficiency and effectiveness. Recent Res Sci Technol 2(7):20–23

    Google Scholar 

  • Shiva Kameshwari MN (2013) Chemical constituents of wild onion Urginea indica Kunth Liliaceae. Int J Pharm Life Sci 4(2):2414–2420

    Google Scholar 

  • Shiva Kameshwari MN, Padma S (2015) Determination of the nutritional value of Urginea indica Kunth. Eur J Biomed Pharm Sci 2(2):354–363

    Google Scholar 

  • Shiva Kameshwari MN, Tharasaraswathi KJ, Muniyamma M (2010) Morphological variations in populations of Urginea indica Kunth Liliaceae. J Appl Nat Sci 2(2):280–289

    Article  Google Scholar 

  • Shiva Kameshwari MN, Bijul Lakshami A, Paramasivam G (2012) Biosystematic studies on medicinal plant Urginea indica Kunth Liliaceae- a review. Int J Pharm Life Sci 3(1):1394–1406

    Google Scholar 

  • Siddiq IA (1964) Studies on induction of polyploidy in maize and Sorghum and on the elimination of diploid cells in colchicines treated maize. Ph. D Thesis, IARI, Delhi

  • Siddiqi EA, Swaminathan MS (1968) Mutational analysis of radial differentiation of Oryza sativa L. Mut Res 6:478–481

    Article  Google Scholar 

  • Siddique I, Ansari MYK (2005) Studies on the genotoxic effects of pollution on brinjal (Solanum melongena L) growing around Harduaganj Thermal Power Plant. Nat Environ Pollution Technol 4(1):13–17

    Google Scholar 

  • Sideris EG, Nawar MM, Nilan RA (1971) Effect of gamma irradiation on gibberellic acid solution and gibberellic like substances in Barley seedling. Radiat Bot 11:209–214

    Article  CAS  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics. CRC Press, Boca Raton, Fla, USA

    Google Scholar 

  • Smith HH (1972) Comparative genetic effects of different physical mutagens in higher plants. In: joint FAO/IAEA. Division of Atomic Energy in Food and Agriculture, ed. Induced Mutations and Plant Breeding Improvement IAEA. Vienna. 75–93.

  • Solanki IS, Sharma B (1994) Mutagenic effectiveness and efficiency of gamma rays, Ethylene Imine and N- Nitroso N-Ethyl Urea in Macrospema lentil. Ind J Genet 54(1):72–76

    CAS  Google Scholar 

  • Swarnkar S, Katewa SS (2008) Ethnobotanical observation on tuberous plants from tribal area of Rajasthan (India). Ethnobot Leaflets 12:647–666

    Google Scholar 

  • Turkoglu S (2007) Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutat Res 626:4–14

    Article  PubMed  Google Scholar 

  • Tushar BK, Sanjit KK, Prem YK, Prithwiraj M, Shankar Y, Bishal J (2017) Effects of monosodium glutamate on human health: a systematic review. World J Pharm Sci 5(5):139–144

    Google Scholar 

  • Van’t Hof J (1968) The action of IAA and Kinetine on the mitotic cycle of proliferative and stationary phase excided root meristems. Exp Cell Res 51:167–176

    Article  PubMed  Google Scholar 

  • Wakachaure R, Ganguly S (2016) Chromosomal polyploidy: a brief review. Pha Biol Eval 3:510–512

    Google Scholar 

  • Walker R, Lupien JR (2000) The safety evaluation of monosodium glutamate. J Nutr 130(4):1049–1052. https://doi.org/10.1093/jn/130.4.1049S

    Article  Google Scholar 

  • Wani MR (2017) Induced chlorophyll mutations, comparative mutagenic effectiveness and efficiency of chemical mutagens in lentils (Lens culinaris Medik). Asian J Plant Sci 16(4):221–226

    Article  CAS  Google Scholar 

  • Young SW, Young PW (1993) Effect of plant growth regulators on mitotic chromosomes. The Nucleus 36:109–113

    Google Scholar 

  • Zanfirescu A, Ungurianu A, Tsatsakis AM, Nitulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D et al (2019) A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Proper 18(4):1111–34

    Article  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Sinha.

Ethics declarations

Conflicts of interest

No conflict of interests.

Data availability

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Main Conclusion: Monosodium Glutamate has long been used as one of the cheapest sources of fertilizers, however, its potential as a chemical mutagen was tested for the first time on Drimia indica (Roxb.) Jessop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R. Effectiveness and efficiency of Monosodium Glutamate as a potential mutagen inducing polyploidy in Drimia indica (Roxb.) Jessop. Genet Resour Crop Evol 69, 1919–1939 (2022). https://doi.org/10.1007/s10722-022-01354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01354-1

Keywords

Navigation