Skip to main content
Log in

Population structure, gene flow and genetic diversity analyses based on agro-morphological traits and microsatellite markers within cultivated and wild germplasms of okra [Abelmoschus esculentus (L.) Moench.]

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Okra [Abelmoschus esculentus (L.) Monech.] is an annual herb of the family Malvaceae and has tremendous nutritional and industrial potential. However, the unknown genome size, variation in ploidy level makes it more challenging for okra breeders to enhance their genetic potential. In this context, the genetic analysis of allelic polymorphism and population structure analysis of okra germplasm is pivotal for its genetic improvement. In the present investigation, a total of 96 okra genotypes were undertaken for morpho-genetic diversity analyses using 13 morphological parameters and 65 SSR markers. Out of 65 SSRs, 50 primers were polymorphic and the mean polymorphic information content (PIC) value was 0.38. The polymorphic loci AVRDC OKRA 64 revealed a maximum PIC value of 0.71 and the number of alleles per locus varied from 2 to 7, with an average of 3.34 alleles per locus. The neighbour-joining (N-J) tree grouped the genotypes into three distinct clusters (I-III), of which Cluster I comprised of cultivated species, A. esculentus and A. caillei, while, Cluster II and III consisted of other related wild species. Furthermore, the population structure analysis distinguished the okra genotypes into two distinct genetic groups comprising cultivated (A. esculentus) and wild-type okra. The variability analysis based on 13 agro-morphological traits revealed that the genotype DOV-92 exhibited the highest per se performance for total fruit yield, followed by Pusa Bhindi-5. The PCA (Principal Component Analysis) analysis revealed that the first three components account for more than 50% of the total genetic variation. The present investigation deciphered a high morphological and genetic diversity in cultivated and wild okra germplasm. Thus, it could serve as important genetic resources for okra improvement programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams CF (1975) Nutritive value of American foods in common units. Agricultural Research Service, US Department of Agriculture

  • Aladele SE, Ariyo OJ, de La Pena R (2008) Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. Afr J Biotechnol 7:1426–1431

  • Andries JA, Jones JE, Sloane LW, Marshall JG (1969) Effects of okra leaf shape on boll rot, yield, and other important characters of upland cotton Gossypium hirsutum L 1. Crop Sci 9(6):705–710

    Article  Google Scholar 

  • Ariyo OJ (1990) Effectiveness and relative discriminatory abilities of techniques measuring genotype × environment interaction and stability in okra [Abelmoschus esculentus (L) Moench]. Euphytica 47(2):99–105

    Article  Google Scholar 

  • Bhat KV, Bisht, IS, Mahajan RK, Rana RS (1996) Analysis of the genetic relationship among Abelmoschus species using isozyme and RAPD markers. In 2nd International Crop Science Congress, pp 17–24

  • Bisht IS, Mahajan RK, Rana RS (1995) Genetic diversity in South Asian okra (Abelmoschus esculentus) germplasm collection. Ann Appl Biol 126:539–550

    Article  Google Scholar 

  • Bisht IS, Bhat KV (2006) Okra (Abelmoschus spp.). In: Singh RJ (ed) Genetic Resources, Chromosome Engineering, and Crop Improvement: Vegetable crops, 3rd Vol. CRC press, pp 148–162

  • Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux PM, Li FW, Melkonian B, Mavrodiev EV, Sun W, Fu Y (2018) 10KP: A phylodiverse genome sequencing plan. Gigascience 7(3):giy013

  • Cornille A, Feurtey A, Ge´lin U, Ropars J, Misvanderbrugge K, Gladieux P, Giraud T (2015) Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 8(4):373–384

  • Das A, Yadav R, Choudhary H, Singh S, Khade Y, Chandel R (2020) Determining genetic combining ability, heterotic potential and gene action for yield contributing traits and Yellow Vein Mosaic Virus (YVMV) resistance in Okra [Abelmoschus esculentus (L.) Monech.]. Plant Genet Resour: Characterisation Util 1:14. Doi: https://doi.org/10.1017/S1479262120000337

  • Das A (2019) Genetic Diversity based on Morphological and Molecular Markers andHeterosis Studies in Okra [Abelmoschus esculentus L.(Moench)]. M. Sc. Dissertation, Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi-12

  • Datta PC, Naug A (1968) A few strains of Abelmoschus esculentus (L.) Moench their karyological in relation to phylogeny and organ development. Beitr Biol Pflanz (BIOSIS) 45:113–126

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

  • Düzyaman E (1997) Okra: botany and horticulture. Hortic Rev 21:41–72

    Google Scholar 

  • Düzyaman E (2005) Phenotypic diversity within a collection of distinct okra (Abelmoschus esculentus) cultivars derived from Turkish landraces. Genet Resour Crop Evol 52:1019–1030

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goude J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. PMID: 15969739. Doi: https://doi.org/10.1111/j.1365-294x.2005.02553.x

  • FAOSTAT (2014) Available online at: http://faostat.fao.org/ (Accessed February 8, 2017)

  • Ford CE (1938) A contribution to a cytogenetical survey of the Malvaceae. Genetica 20:431–452

    Article  Google Scholar 

  • Fougat RS, Purohit AR, Kumar S, Parekh MJ, Kumar M (2015) SSR based genetic diversity in Abelmoschus species. Indian J Agr Sci 85:1223–1228

  • Fufa N (2019) Propagation methods of okra (Abelmoschus esculentus L.) and its application used in vitro plant regeneration”. Actasciagric 3:125–130

    Google Scholar 

  • Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453–467. https://doi.org/10.1093/biomet/58.3.453

    Article  Google Scholar 

  • Gangopadhyay KK, Singh A, Bag MK, Ranjan P, Prasad TV, Roy A, Dutta M (2017) Diversity analysis and evaluation of wild Abelmoschus species for agro-morphological traits and major biotic stresses under the north western agro-climatic condition of India. Genet Resour Crop Evol 64(4):775–790

    Article  Google Scholar 

  • Gulsen O, Karagul S, Abak K (2007) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia 62(1):41–45

    Article  CAS  Google Scholar 

  • Hazra P, Basu D (2000) Genetic variability, correlation and path analysis in okra. Ann Agric Sci 21:452–453

    Google Scholar 

  • Huang J, Liu S, Guo X, Zhao YK, Li M, Zhang C, Zhu J, Ye J (2017) Genetic diversity and evolutionary analysis of okra [Abelmoschus esculentus (L.) Moench] germplasm resources based on ISSR markers. Genet Mol Res 1:1–8

    Google Scholar 

  • Jaiprakashnarayan RP, Mulge R (2004) Correlation and path analysis in okra [Abelmoschus esculentus (L.) Moench]. Indian J Hortic 61:232–235

    Google Scholar 

  • Joshi AB, Hardas MW (1956) Alloploid Nature of Okra [Abelmoschus esculentus (L.) Monech.]. Nature. 178(4543):1190

  • Joshi AB, Hardas MW (1953) Chromosome number of Abelmoschus tuberculatus Pal et Singh—a species related to the cultivated bhindi. Curr Sci 22(12):384–385

    Google Scholar 

  • Kaur K, Pathak M, Kaur S, Pathak D, Chawla N (2013) Assessment of morphological and molecular diversity among okra [Abelmoschus esculentus (L.) Moench.] germplasm. Afr J Biotechnol 12:27–34

    Article  Google Scholar 

  • Kumar S, Parekh MJ, Fougat RS, Patel SK, Patel CB, Kumar M, Patel BR (2017) Assessment of genetic diversity among okra genotypes using SSR markers. J Plant Biochem Biot 26:172–178

    Article  CAS  Google Scholar 

  • Kumar C, Singh SK, Singh R, Pramanick KK, Verma MK, Srivastav M, Tiwari G, Choudhury DR (2019) Genetic diversity and population structure analysis of wild Malus genotypes including the crabapples (M. baccata (L.) Borkh. & M. sikkimensis (Wenzig) Koehne ex C. Schneider) collected from the Indian Himalayan region using microsatellite markers. Genet Resour Crop Evol 66(6):1311–1326

  • Kyriakopoulou OG, Arens P, Pelgrom KT, Karapanos I, Bebeli P, Passam HC (2014) Genetic and morphological diversity of okra [Abelmoschus esculentus [L.] Moench.] genotypes and their possible relationships, with particular reference to Greek landraces. Sci Hortic 171:58–70

  • Lever J, Krzywinski M, Altman N (2017) Principal component analysis. Nat Methods 14:641–642. https://doi.org/10.1038/nmeth.4346

    Article  CAS  Google Scholar 

  • Li FP, Lee YS, Kwon SW, Li G, Park YJ (2014) Analysis of genetic diversity and trait correlations among Korean landrace rice (Oryza sativa L.). Genet Mol Res 13(3):6316–6331

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

  • López-Cortés XA, Matamala F, Maldonado C, Mora-Poblete F, Scapim CA (2020) A deep learning approach to population structure inference in Inbred Lines of Maize. Front. Genet. 11:543459. Makumbi D, Betran JF, Banziger M, Ribaut JM (2011) Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180:143–162

    Google Scholar 

  • Mishra GP, Singh B, Seth T, Singh AK, Halder J, Krishnan N, Tiwari SK, Singh PM (2017) Biotechnological advancements and begomovirus management in okra (Abelmoschus esculentus L.): Status and perspectives. Front Plant Sci 8:360

  • Nadkarni KM (1927) Indian Meteria Medica. Nadkarni and Co.

  • Omasheva MY, Flachowsky H, Ryabushkina NA, Pozharskiy AS, Galiakparov NN, Hanke MV (2017) To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genet Genomes 13(3):52

    Article  Google Scholar 

  • One Thousand Plant Transcriptomes Initiative (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574(7780):679

    Article  CAS  Google Scholar 

  • Ostrowski MF, David J, Santoni S, McKhann H, Reboud X, Le Corre V, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15(6):1507–1517

    CAS  Google Scholar 

  • Park YH, West MA, St. Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47(3):510–518

  • Peakall RO, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

  • Poehlman JM, Sleper DA (1995) Breeding of Field Crops. 4th edn. Iowa State University Press, Ames, IA

  • Prakash K, Pitchaimuthu M, Ravishankar KV (2011) Research Article Assessment of genetic relatedness among okra genotypes [Abelmoschus esculentus (L.) Moench] using RAPD markers. Electron J Plant Breed 2(1):80–86

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 (PMID: 10835412)

    Article  CAS  Google Scholar 

  • R Studio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL. http://www.rstudio.com/

  • Ramya P, Bhat KV (2012) Analysis of phylogenetic relationships in Abelmoschus species (Malvaceae) using ribosomal and chloroplast intergenic spacers. Indian J Genet Plant Breed 72(4):445–453

    CAS  Google Scholar 

  • Ravishankar KV, Muthaiah G, Mottaiyan P, Gundale SK (2018) Identification of novel microsatellite markers in okra [Abelmoschus esculentus (L.) Moench] through next-generation sequencing and their utilization in analysis of genetic relatedness studies and cross-species transferability. J Genet 97(1):39–47

  • Rohlf FJ (1998) NTSYSpc: numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Software, Setauket

  • Salameh MN (2014) Genetic Diversity of Okra (Abelmoschus esculentus L.) landraces from different agro-ecological regions revealed by AFLP analysis. Am Eurasian J Agric Environ Sci 14:155–160

    CAS  Google Scholar 

  • Schafleitner R, Kumar S, Lin CY, Hegde SG, Ebert A (2013) The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis. Gene 517:27–36

    Article  CAS  Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112(8):1416–1428

    Article  CAS  Google Scholar 

  • Shetty AA, Singh JP, Singh D (2013) Resistance to yellow vein mosaic virus in okra: A review. Biol Agric Hortic 29:159–164

    Article  Google Scholar 

  • Siemonsma JS (1982) West african okra—Morphological and cytogenetical indications for the existence of a natural amphidiploid of Abelmoschus esculentus (L.) Moench and A. manihot (L.) Medikus. Euphytica 31:241–252

    Article  Google Scholar 

  • Singh B, Aakansha G (2014) Analysis of genetic diversity in okra [Abelmoschus esculentus (L.) Moench] genotypes using RAPD markers. Vegetos 27:266–271

    Article  Google Scholar 

  • Singh K, Pandey UB (1993) Export of vegetables-status and strategies. Veg Sci 20:93–103

    Google Scholar 

  • Singh B, Chaubey T, Upadhyay DK, Jha AASTIK, Pandey SD, Sanwal SK (2015) Varietal characterization of okra (Abelmoschus esculentus) based on morphological descriptions. Indian J Agric Sci 85(9):1192–1200

    Google Scholar 

  • Singh BD, Singh AK (2015) Marker Assisted Plant Breeding: Principles and Practices. Springer, pp 217–255

  • Verma H, Borah JL, Sarma RN (2019) Variability assessment for root and drought tolerance traits and genetic diversity analysis of rice germplasm using SSR markers. Sci Rep 9:16513. https://doi.org/10.1038/s41598-019-52884-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Badiger M, Lata S (2019) Studies of genetic variability and association of yield traits and YVMV disease in Abelmoschus species. Indian J Agric Sci 89(4):688–694

    Google Scholar 

  • Yıldız M, Koçak M, Baloch FS (2015) Genetic bottlenecks in Turkish okra germplasm and utility of iPBSretrotransposon markers for genetic diversity assessment. Genet Mol Res 14(3):10588–10602

    Article  Google Scholar 

  • Yıldız M, Ekbiç E, Düzyaman E, Serçe S, Abak K (2016) Genetic and phenotypic variation of Turkish Okra (Abelmoschus esculentus L. Moench) accessions and their possible relationship with American, Indian and African germplasms. J Plant Biochem Biot 25(3):234–244

    Article  Google Scholar 

  • Yonas M, Garedew W, Debela A (2014) Multivariate analysis among okra [Abelmoschus esculentus (l.) moench] collection in South Western Ethiopia. J Plant Sci 9(2):43

    Article  Google Scholar 

  • Yuan CY, Zhang C, Wang P, Hu S, Chang HP, Xiao WJ, Guo XH (2014) Genetic diversity analysis of okra (Abelmoschus esculentus L.) by inter-simple sequence repeat (ISSR) markers. Genet Mol Res 13:3165–3175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Division of Vegetable Science and PG School, ICAR-IARI, New Delhi, to provide all sorts of laboratory facilities and financial support. First Author also wants to extend his acknowledgement to the Indian Council of Agriculture Research (ICAR) for awarding ICAR-PG Fellowship-2017 during the tenure of the Post-graduate research program.

Funding

There is no specific financial assistance provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

Anjan Das: Investigation, Data Curation, Formal analysis, Writing—Original Draft; Ramesh Kumar Yadav: Conceptualization, Resources, Supervision, Writing—Review & Editing; Harshwardhan Choudhary: Writing—Review & Editing, Methodology; Suman Lata: Formal analysis, Visualization, Writing—Review & Editing; Saurabh Singh: Formal analysis, Visualization; Writing—Review & Editing; Chavlesh Kumar: Formal analysis; Shilpi Kumari: Formal analysis, Data Curation; Boopalakrishnan G: Data Curation; Rakesh Bhardwaj: Data Curation, AkshayTalukdar: Formal analysis.

Corresponding author

Correspondence to Ramesh Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Human and animal rights

No animal or any human participants were used.

Informed consent

All the authors were informed and they have given the consent for the publication in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 812 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Yadav, R.K., Choudhary, H. et al. Population structure, gene flow and genetic diversity analyses based on agro-morphological traits and microsatellite markers within cultivated and wild germplasms of okra [Abelmoschus esculentus (L.) Moench.]. Genet Resour Crop Evol 69, 771–791 (2022). https://doi.org/10.1007/s10722-021-01263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01263-9

Keywords

Navigation