Skip to main content
Log in

Phylogenetic analysis of FestucaLolium complex using SRAP markers

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The Lolium and Festuca genera have been treated as the most important groupings of temperate grasses in forage production and the turf industry. The two genera undoubtedly represent a closely allied complex of related species. The objective of this study was to obtain an overview of the diversity and genetic relationships among 59 accessions of 32 species of the LoliumFestuca complex using sequence related amplified polymorphism (SRAP) markers. In total, 22 primer combinations amplified 269 polymorphic bands which were detected with an average of 12.23 alleles per SRAP locus. The average polymorphic rate (P) between the species studied was 100 %, demonstrating their high degree of genetic diversity. According to the POPGENE and AMOVA analyses, the inter-genera diversity and the variance between the two genera were both under 50 %. The dendrograms derived either by NTSYS or MEGA in addition to the PCO were consistent and clearly illustrated the relationships among representatives of the Lolium genus as well as the subgenus Festuca, Schedonorus and Leucopoa within the Festuca genus. The result of this study strongly supported the previous morphological separation into a “broad leaved” and “fine-leaved” clades, and it once again demonstrated the close relationship between the Lolium genus and the Schedonorus subgenus. This study also suggested the inclusion of F. mairei in subg. Schedonorus and to divide subgenus Leucopoa by moving sect. Leucopoa and sect. Breviaristatae into different subgenera. The analysis method described provides new methodologies for determining the phylogeny of these outbreeding species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alexeev E (1986) Festuca L. (Poaceae) in Venezuela, Colombia et Ecuador. Novosti Sist. vyssh. Rast 23:5–23

    Google Scholar 

  • Borrill M, Kirby M, Morgan WG (1980) Studies in Festuca 12. Morphology, distribution and cytogenetics of F. donax, F. scariosa and their hybrids, and the evolutionary significance of their fertile amphiploid derivative. New Phytol 86:423–439

    Article  Google Scholar 

  • Budak H, Shearman R, Parmaksiz I, Dweikat I (2004) Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 109:280–288

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Stewart A, Inoue M, Yuyama N, Hirata M (2011) Lolium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, pp 165–173

  • Catalán P, Torrecilla P, Rodríguez JÁL, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL–F sequences. Mol Phylogenet Evol 31:517–541

    Article  PubMed  Google Scholar 

  • Catalán P, Torrecilla P, López-Rodríguez JA, Müller J, Stace CA (2007) A systematic approach to subtribe Loliinae (Poaceae: Pooideae) based on phylogenetic evidence. Aliso: J Syst Evol Bot 23:380–405

    Article  Google Scholar 

  • Chandrasekharan P, Thomas H (1971) Studies in Festuca. 5. Cytogenetic relationships between species of Bovinae and Scariosae. Zeitschr. für Pflanzenzüchtung 65:353–354

    Google Scholar 

  • Charmet G, Ravel C, Balfourier F (1997) Phylogenetic analysis in the FestucaLolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94:1038–1046

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the world. Kew bulletin additional series XIII. Royal Botanical Gardens, Kew, pp 1–389

  • Darbyshire SJ (1993) Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae). Novon 3:239–243

    Article  Google Scholar 

  • Darbyshire SJ, Warwick SI (1992) Phylogeny of North American Festuca (Poaceae) and related genera using chloroplast DNA restriction site variation. Can J Bot 70:2415–2429

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doyle J (1991) DNA protocols for plants. In: Hewitt GM, Johnston AW, Young JPW (eds) Molecular techniques in taxonomy. Springer, Berlin Heidelberg, pp 283–293

  • Excoffier L (1995) AMOVA 1.55 (analysis of molecular variance). University of Geneva, Geneva

    Google Scholar 

  • Gaut B, Tredway L, Kubik C, Gaut R, Meyer W (2000) Phylogenetic relationships and genetic diversity among members of the FestucaLolium complex (Poaceae) based on ITS sequence data. Plant Syst Evol 224:33–53

    Article  CAS  Google Scholar 

  • Ghesquière M, Humphreys MW, Zwierzykowski Z (2010) Festulolium. In: Boller B (ed) Fodder crops and amenity grasses. Springer, pp 288–311

  • Grisebach A (1852–1853) Gramineae. C. F. Ledebour, Flora rossica 4:324–484

  • Hackel E (1882) Monographia festucarum europaearum. T. Fischer, Kassel, Berlin

    Book  Google Scholar 

  • Hand ML, Cogan NO, Stewart AV, Forster JW (2010) Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the LoliumFestuca species complex. BMC Evol Biol 10:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Holub J (1998) Reclassifications and new names in vascular plants: 1. Preslia 70:97–122

    Google Scholar 

  • Humphreys M, Thomas H, Morgan W, Meredith M, Harper J, Thomas H, Zwierzkowski Z, Ghesquiere M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75:171–174

    Article  Google Scholar 

  • Inda LA, Segarra-Moragues JG, Müller J, Peterson PM, Catalán P (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogenet Evol 46:932–957

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC (1972) Testing the theory of natural selection. Nature 236:181–182

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li G, McVetty PB, Quiros CF (2013) SRAP molecular marker technology in plant science. In: Andersen SB (ed) Plant breeding from laboratories to fields, pp 23–43 doi:10.5772/54511

  • Liu F, Guo Q-S, Shi H-Z, Wang T, Zhu Z-B (2013) Genetic diversity and phylogenetic relationships among and within populations of Whitmania pigra and Hirudo nipponica based on ISSR and SRAP markers. Biochem Syst Ecol 51:215–223

    Article  CAS  Google Scholar 

  • Malik C, Thomas P (1966) Karyotypic studies in some Lolium and Festuca species. Caryologia 19:167–196

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pasakinskiene I (1998) New molecular evidence on genome relationships and chromosome identification in fescue (Festuca) and ryegrass (Lolium). Heredity 81:659–665

    Article  CAS  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1998) Free-tree–freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol-Prague 45:97–99

    Google Scholar 

  • Rohlf F (1997) NTSYS-pc 2.1. Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, NY

    Google Scholar 

  • Roldàn-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  Google Scholar 

  • Seal A (1983) DNA variation in Festuca. Heredity 50:225–236

    Article  CAS  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. WH Freeman, San Fran cisco

    Google Scholar 

  • Soreng R, Terrell E (1997) Taxonomic notes on Schedonorus, a segregate genus from Festuca or Lolium, with a new nothogenus, ×Schedololium, and new combinations. Phytologia 83:85–88

    Google Scholar 

  • Soreng R, Davis J, Doyle J (1990) A phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam. Pooideae. Plant Syst Evol 172:83–97

    Article  Google Scholar 

  • Stammers M, Harris J, Evans G, Hayward M, Forster J (1995) Use of random PCR (RAPD) technology to analyse phylogenetic relationships in the Lolium/Festuca complex. Heredity 74:19–27

    Article  PubMed  Google Scholar 

  • Talebi M, Kazemi M, Sayed-Tabatabaei BE (2012) Molecular diversity and phylogenetic relationships of Pistacia vera, Pistacia atlantica subsp. mutica and Pistacia khinjuk using SRAP markers. Biochem Syst Ecol 44:179–185

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terrell EE (1968) A taxonomic revision of the genus Lolium, vol 1392. US Dept. of Agriculture

  • Thomas H, Harper J, Meredith M, Morgan W, King I (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410

    Article  PubMed  CAS  Google Scholar 

  • Torrecilla P, Catalán P (2002) Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst Bot 27:241–251

    Google Scholar 

  • Torrecilla P, José-Angel, López-Rodríguez, Catalán P (2004) Phylogenetic relationships of Vulpia and related genera (Poeae, Poaceae) based on analysis of ITS and trnL–F sequences. Ann Mo Bot Gard. pp 124–158

  • Tzvelev N (2000) Novye kombinatsii taksonov sosudistykh rastenii Combinationes novae taxorum plantarum vascularium). Novosti Sist Vyssh Rast 32:181–185

    Google Scholar 

  • Uzun A, Yesiloglu T, Tuzcu O, Gulsen O (2009) Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hortic 121:306–312

    Article  CAS  Google Scholar 

  • Uzun A, Yesiloglu T, Polat I, Aka-Kacar Y, Gulsen O, Yildirim B, Tuzcu O, Tepe S, Canan I, Anil S (2011) Evaluation of genetic diversity in lemons and some of their relatives based on SRAP and SSR markers. Plant Mol Biol Rep 29:693–701

    Article  CAS  Google Scholar 

  • Xu J, Li A, Wang X, Qi J, Zhang L, Zhang G, Su J, Tao A (2013) Genetic diversity and phylogenetic relationship of kenaf (Hibiscus cannabinus L.) accessions evaluated by SRAP and ISSR. Biochem Syst Ecol 49:94–100

    Article  CAS  Google Scholar 

  • Yaneshita M, Ohmura T, Sasakuma T, Ogihara Y (1993) Phylogenetic relationships of turfgrasses as revealed by restriction fragment analysis of chloroplast DNA. Theor Appl Genet 87:129–135

    Article  PubMed  CAS  Google Scholar 

  • Yeh F, Rongcal Y, Boyle T (2000) POPGENE 1.32: a free program for the analysis of genetic variation among and within populations using co-dominant and dominant markers. Depart Renewable Resources Univ Alberta, Canada

  • Zhang FM (2001) DCFA1.1, a program accompanied by AMOVA to compute the matrix of distance. Laboratory Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Science, Beijing

Download references

Acknowledgments

The authors thank National Plant Germplasm System of United States Department of Agriculture (USDA) for kindly supplying the seeds. This work was supported by the National Basic Research Program of China (973 Program) (2014CB138705), the Earmarked Fund for the Modern Agro-Industry Technology Research System (#CARS-35-05). The authors would also like to acknowledge Mike W. Humphreys for providing helpful comments and language editing on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Quan Zhang.

Ethics declarations

Conflict of interest

The authors state no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Ma, X., Zhou, K. et al. Phylogenetic analysis of FestucaLolium complex using SRAP markers. Genet Resour Crop Evol 63, 7–18 (2016). https://doi.org/10.1007/s10722-015-0324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0324-5

Keywords

Navigation