Skip to main content
Log in

Crossability patterns within and among Oryza series Sativae species from Asia and Australia

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Reproductive barriers are thought to intensify with increasing genetic distance between species. To assess the extent of post-pollination reproductive isolation within and among the Asia Pacific species of Oryza series Sativae, crossing experiments using 15 accessions of O. meridionalis Ng, O. nivara Sharma et Shastry, and O. rufipogon Griff. were conducted. Intra- and interspecific crosses of the selfing species O. meridionalis and O. nivara had very low seed set and produced inviable F1 seeds indicative of strong pre- and post-zygotic barriers. Contrastingly, the outcrossing O. rufipogon exhibited high intraspecific crossability and modest compatibility with O. nivara and O. meridionalis in terms of seed set suggesting substantial pre-zygotic reproductive isolation of the species. O. rufipogon was asymmetrically compatible with O. meridionalis and symmetrically with O. nivara. The two inbreeding species manifested comparable degrees of isolation from O. rufipogon despite differences in strength of several post-zygotic barriers. Mating compatibility within and between the Asia Pacific species of Oryza series Sativae is not strongly spatially influenced, but some resistance to gene flow under sympatric conditions was observed. Intraspecific O. rufipogon F1s were more vegetatively robust and more late-flowering than their parents. Intra- and interspecific hybrids of Australasian O. rufipogon differed phenotypically from crosses with non-Australasian populations. Interspecific hybrids displayed both intermediate and parental character traits. O. nivara and O. rufipogon generated early-flowering F1s that are more similar to the former. O. meridionalis and O. rufipogon produced F1s that varied in phenology and morphology depending on the maternal and paternal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson S (1993) Morphometric differentiation, patterns of interfertility, and the genetic-basis of character evolution in Crepis tectorum (Asteraceae). Plant Syst Evol 184(1–2):27–40

    Article  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Banaticla-Hilario MCN (2012) An ecogeographic analysis of Oryza series Sativae in Asia and the Pacific. Ph. D. Thesis. Wageningen University, The Netherlands

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5(9):e236

    Article  PubMed  Google Scholar 

  • Duan S, Lu B, Li Z, Tong J, Kong J, Yao W, Li S, Zhu Y (2007) Phylogenetic analysis of AA-genome Oryza species (Poaceae) based on chloroplast, mitochondrial, and nuclear DNA sequences. Biochem Genet 45(1):113–129

    Article  PubMed  CAS  Google Scholar 

  • Duistermaat H (1987) A revision of Oryza (Gramineae) in Malesia and Australia. Blumea 32:157–193

    Google Scholar 

  • Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci USA 93:5090–5093

    Article  PubMed  CAS  Google Scholar 

  • Favero AP, Simpson CE, Valls JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1552

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks, CA

    Google Scholar 

  • Fulton T, Chunwongse J, Tanksley S (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol 13(3):207–209. doi:10.1007/bf02670897

    Article  CAS  Google Scholar 

  • Grundt HH, Kjolner S, Borgen L, Rieseberg LH, Brochmann C (2006) High biological species diversity in the arctic flora. Proc Natl Acad Sci USA 103(4):972–975. doi:10.1073/pnas.0510270103

    Article  PubMed  CAS  Google Scholar 

  • Juliano AB, Naredo ME, Lu B-R, Jackson MT (2005) Genetic differentiation in Oryza meridionalis Ng based on molecular and crossability analyses. Genet Resour Crop Evol 52(4):435–445

    Article  CAS  Google Scholar 

  • Kairudin N, Benong M, Rahman N (1996) In situ and ex situ study on morphological traits of Oryza officinalis Wall. ex Watt. Second National Congress on Genetics, Malaysia: Genetics Society of Malaysia, 365–369

  • Kwon S-J, Lee JK, Hong S-W, Park Y-J, McNally KL, Kim N-S (2006) Genetic diversity and phylogenetic relationship in AA Oryza species as revealed by Rim2/Hipa CACTA transposon display. Genes Genet Syst 81(2):93–101

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Pinson S, Paterson AH, Park WD, Stansel JW (1997) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145(4):1139–1148

    PubMed  CAS  Google Scholar 

  • Lu BR, Naredo MEB, Juliano A, Jackson MT (2003) Genomic relationships of the AA genome oryza species. In: Khush GS, Brar DS, Hardy B (eds) Advances in rice genetics, vol 1. International Rice Research Institute, Los Baños (Philippines), pp 115–121

    Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 10:229–237

    Article  Google Scholar 

  • Mallet J (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos Trans R Soc B Biol Sci 363:2971–2986

    Article  Google Scholar 

  • Marcussen T, Borgen L (2011) Species delimitation in the Ponto-Caucasian Viola sieheana complex, based on evidence from allozymes, morphology, ploidy levels, and crossing experiments. Plant Syst Evol 291(3):183–196. doi:10.1007/s00606-010-0377-z

    Article  CAS  Google Scholar 

  • Naredo MEB, Juliano AB, Lu BR, Jackson MT (1997) Hybridization of AA genome rice species from Asia and Australia.1. Crosses and development of hybrids. Genet Resour Crop Evol 44(1):17–23

    Article  Google Scholar 

  • Naredo MEB, Juliano AB, Lu BR, Jackson MT (1998) Taxonomic status of Oryza glumaepatula Steud. II. Hybridization between new world diploids and AA genome species from Asia and Australia. Genet Resour Crop Evol 45(3):205–214

    Article  Google Scholar 

  • Nezu M, Katayama TC, Kihara H (1960) Genetic study of the genus Oryza. Seiken Ziho 11:1–11

    Google Scholar 

  • Ng NQ, Hawkes JG, Williams JT, Chang TT (1981) The recognition of a new species of rice (Oryza) from Australia. Bot J Linn Soc 82:327–330

    Article  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. Japan Science Society Press, Tokyo

    Google Scholar 

  • Pellegrino G, Bellusci F, Musacchio A (2009) Genetic integrity of sympatric hybridising plant species: the case of Orchis italica and O. anthropophora. Plant Biol 11(3):434–441. doi:10.1111/j.1438-8677.2008.00135.x

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Raimondi J, Sala R, Camadro E (2003) Crossability relationships among the wild diploid potato species Solanum kurtzianum, S. chacoense and S. ruiz-lealii from Argentina. Euphytica 132(3):287–295

    Article  Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140(4):599–624. doi:10.1046/j.1469-8137.1998.00315.x

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant Speciation. Science 317(5840):910–914. doi:10.1126/science.1137729

    Article  PubMed  CAS  Google Scholar 

  • Roschevics R (1931) A contribution to the study of rice. Trudy Prikl Bot Genet Selek 27(4):3–133

    Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251

    Google Scholar 

  • Tateoka T (1963) Taxonomic studies of Oryza. III. Key to the species and their enumeration. Bot Mag Tokyo 76:165–173

    Google Scholar 

  • Tiffin P, Olson S, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc Lond B Biol Sci 268(1469):861–867. doi:10.1098/rspb.2000.1578

    Article  CAS  Google Scholar 

  • Vaughan DA, Morishima H (2003) Biosystematics of the genus Oryza. In: Smith WC (ed) Rice: origin, history, technology and production. Wiley, New Jersey, pp 27–65

    Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6(2):139–146

    Article  PubMed  CAS  Google Scholar 

  • Vriesendorp B, Bakker FT (2005) Reconstructing patterns of reticulate evolution in angiosperms: what can we do? Taxon 54:593–604

    Article  Google Scholar 

  • Wang C, Tang S, Tang Y (1998) Effects of male sterile cytoplasm on yield and agronomic characters in Japonica hybrid rice, Oryza sativa L. Breed Sci 48:263–271

    Google Scholar 

  • Waters DLE, Nock CJ, Ishikawa R, Rice N, Henry RJ (2012) Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol 2(1):211–217

    Article  PubMed  Google Scholar 

  • Wei C, Wang L, Yang Y, Chen Z, Shahid M, Li J, Liu X, Lu Y (2010) Identification of an S n5 allele in Oryza rufipogon Griff. and its effect on embryo sac fertility. Chin Sci Bull 55(13):1255–1262. doi:10.1007/s11434-010-0154-y

    Article  CAS  Google Scholar 

  • Widmer A, Lexer C, Cozzolino S (2009) Evolution of reproductive isolation in plants. Heredity 102(1):31–38

    Article  PubMed  CAS  Google Scholar 

  • Wu C (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Xu JH, Kurata N, Akimoto M, Ohtsubo H, Ohtsubo E (2005) Identification and characterization of Australian wild rice strains of Oryza meridionalis and Oryza rufipogon by SINE insertion polymorphism. Genes Genet Syst 80:129–134

  • Yasumoto A, Yahara T (2006) Post-pollination reproductive isolation between diurnally and nocturnally flowering daylilies, Hemerocallis fulva and Hemerocallis citrina. J Plant Res 119(6):617–623

    Article  PubMed  Google Scholar 

  • Yu L, Xu Q, Qiu B, Yz Xiong, Rao S (2007) Comparative studies on the main agronomic characteristics between in situ and ex-situ conserved wild rice populations in dongxiang. J Plant Genet Resour 8:99–101

    Google Scholar 

  • Zheng X, Ge S (2010) Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara). Mol Ecol 19:2439–2454

    Article  PubMed  Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167(1):249–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the T.T. Chang Genetic Resources Center (TTC-GRC) in IRRI and the Biosystematics Group of Wageningen University. The authors acknowledge the use of services and facilities of TTC-GRC, IRRI. The wild rice nursery support staff lead by Ms. Ma. Socorro Almazan facilitated the crossing experiments and phenotyping of hybrids. The Genomic Diversity Laboratory team provided assistance in DNA extraction. Guidance in conducting crossing experiments, F1 screening and statistical analyses were provided by Ms. Ma. Elizabeth Naredo, Ms. Sheila Mae Mercado and Ms. Leilani Nora, respectively. Prof. Marc Sm. Sosef helped in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Celeste N. Banaticla-Hilario.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banaticla-Hilario, M.C.N., McNally, K.L., van den Berg, R.G. et al. Crossability patterns within and among Oryza series Sativae species from Asia and Australia. Genet Resour Crop Evol 60, 1899–1914 (2013). https://doi.org/10.1007/s10722-013-9965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-9965-4

Keywords

Navigation