Skip to main content
Log in

Exploring the population genetics of genebank and historical landrace varieties

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Landrace accessions have long been recognized as an important source of genetic diversity for crop species, and landraces are stored in genebanks across the world as genetic resources for future crop development. Landraces are also an important part of the human cultural heritage and as such they have been used for genetic studies to make inferences about historical agriculture. However, surprisingly little is known about the within-accession diversity of landrace crops of different species. In order to evaluate the diversity of Swedish landraces we used microsatellite markers to genotype accessions of four species (barley, pea, oats and rye), both extant genebank material and 114-year-old seed samples of similar geographic origin and type. We found consistently high levels of within-population genetic diversity in the historical material, but varying and often lower diversity levels in the genebank accessions. We also make tentative conclusions about how representative the genebank material is to what was originally cultivated in its reported area of origin and suggest that the true identity of the genebank accessions is unclear and that historical seed collections should be a more appropriate material for the study of historical agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    Article  PubMed  Google Scholar 

  • Atterberg A (1891) Neues System der Hafervarietäten nebst Beschreibung der nordischen Haferformen. Landw Versuchs-Stat 39:171–204

    Google Scholar 

  • Camacho Villa TC, Maxted N, Scholten MA, Ford-Lloyd BV (2005) Defining and identifying crop landraces. Plant Gen Res 3:373–384

    Article  Google Scholar 

  • Chebotar S, Röder MS, Korzun V, Börner A (2002) Genetic integrity of ex situ genebank collections. Cell Mol Biol Lett 7:437–444

    PubMed  CAS  Google Scholar 

  • Chebotar S, Röder MS, Korzun V, Saal B, Weber WE, Börner A (2003) Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107:1469–1476

    Article  PubMed  CAS  Google Scholar 

  • Djè Y, Forcioli D, Ater M, Lefèbvre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163

    Article  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Fikiru E, Tesfaye K, Bekele E (2007) Genetic diversity and population structure of Ethiopian lentil (Lens culinaris Medikus) landraces as revealed by ISSR marker. Afr J Biotechnol 6:1460–1468

    CAS  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Isaac AD, Muldoon M, Brown KA, Brown TA (2010) Genetic analysis of wheat landraces enables the location of the first agricultural sites in Italy to be identified. J Arch Sci 37:950–956

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Pietrzak LN (1988) Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity. Genetics 119:981–990

    PubMed  CAS  Google Scholar 

  • Jensen NF (1961) Genetics and inheritance in oats: inheritance of morphological and other characters. In: Coffman FA (ed) Oats and oats improvement. American Society of Agronomy, Madison, WI, pp 125–136

    Google Scholar 

  • Jones H, Lister DL, Bower MA, Leigh FJ, Smith LMJ, Jones MK (2008a) Approaches and constraints of using existing landraces and extant plant material to understand agricultural spread in prehistory. Plant Gen Res 6:98–112

    Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008b) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci 104:1424–1429

    Article  PubMed  CAS  Google Scholar 

  • Leino MW, Hagenblad J (2010) Nineteenth century seeds reveal the population genetics of landrace barley (Hordeum vulgare). Mol Biol Evol 27:964–973

    Article  PubMed  CAS  Google Scholar 

  • Leino MW, Hagenblad J, Edqvist J, Karlsson Strese E-M (2009) DNA preservation and utility of a historic seed collection. Seed Sci Res 19:125–135

    Article  CAS  Google Scholar 

  • Li CD, Rossnagel BG, Scoles GJ (2000) The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268

    Article  CAS  Google Scholar 

  • Lia VV, Confalonieri VA, Ratto N, Cámara Hernández JA, Miante Alzogaray AM, Poggio L, Brown TA (2007) Microsatellite typing of ancient maize: insights into the history of agriculture in Southern America. Proc R Soc B 274:545–554

    Article  PubMed  CAS  Google Scholar 

  • Lister DL, Thaw S, Bower MA, Jones H, Charles MP, Jones G, Smith LMJ, Howe CJ, Brown TA, Jones MK (2009) Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Arch Sci 36:1092–1098

    Article  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nordic Gene Bank (1999) Nordic Gene Bank 1979–1999. Nordic Gene Bank publications 35

  • Olsson G (1997) Gamla lantsorter—utnyttjande och bevarande. In: Olsson G (ed) Den svenska växtförädlingens historia. KSLA, Stockholm, pp 121–130

    Google Scholar 

  • Ortiz R, Nurminiemi M, Madsen S, Rognli OA, Bjørnstad Å (2002) Cultivar diversity in Nordic spring barley breeding (1930–1991). Euphytica 123:111–119

    Article  Google Scholar 

  • Osvald H (1959) Åkerns nyttoväxter. Sv. litteratur, Stockholm

    Google Scholar 

  • Pal N, Sandhu JS, Domier LL, Kolb FL (2002) Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci 42:912–918

    Article  CAS  Google Scholar 

  • Papa R, Attene G, Barcaccia G, Ohgata A, Konishi T (1998) Genetic diversity in landrace populations of Hordeum vulgare L. from Sardinia, Italy, as revealed by RAPDs, isozymes and morphophenological traits. Plant Breed 117:523–530

    Article  Google Scholar 

  • Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486

    Article  PubMed  CAS  Google Scholar 

  • Perez de la Vega MP, Allard RW (1984) Mating system and genetic polymorphism in populations of Secale cereale and Secale vavilovii. Can J Genet Cytol 26:308–317

    Google Scholar 

  • Persson K, von Bothmer R (2002) Genetic diversity amongst landraces of rye (Secale cereale L.) from northern Europe. Hereditas 136:29–38

    Article  PubMed  Google Scholar 

  • Persson K, von Bothmer R, Gullord M, Gunnarsson E (2006) Phenotypic variation and relationships in landraces and improved varieties of rye (Secale cereale L.) from northern Europe. Gen Res Crop Evol 53:857–866

    Article  Google Scholar 

  • Polowick PL, Vandenberg A, Mahon JD (2002) Field assessment of outcrossing from transgenic pea (Pisum sativum L.) plants. Transgenic Res 11:515–519

    Article  CAS  Google Scholar 

  • Pressoir G, Berthaud J (2004) Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92:88–94

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. ISBN 3-900051-07-0

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sanchez JJ, Goodman MM, Stuber CW (2000) Isozymatic and morphological diversity in the races of maize in Mexico. Econ Bot 54:43–59

    Article  Google Scholar 

  • Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635

    Article  Google Scholar 

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    Article  CAS  Google Scholar 

  • Sun CQ, Wang XK, Li ZC, Yoshimura A, Iwata N (2001) Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet 102:157–162

    Article  CAS  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russel J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  • Xu DH, Gai JY (2003) Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breed 122:503–506

    Article  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nordic Genetic Resource Center (NordGen) for providing seed material. This work was supported by the Lagersberg foundation, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), Carl Tryggers Foundation, the Nilsson-Ehle foundation and the Helge Ax:son Johnsson foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Hagenblad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagenblad, J., Zie, J. & Leino, M.W. Exploring the population genetics of genebank and historical landrace varieties. Genet Resour Crop Evol 59, 1185–1199 (2012). https://doi.org/10.1007/s10722-011-9754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-011-9754-x

Keywords

Navigation