Skip to main content
Log in

Single-locus EST-SSR markers for characterization of population genetic diversity and structure across ploidy levels in switchgrass (Panicum virgatum L.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Polyploidy, ploidal variation between populations, and aneuploidy within some populations complicate population genetic analyses in switchgrass. We report 21 genic-simple sequence repeat marker loci with single-locus disomic segregation in tetraploids and apparently tetrasomic inheritance in octoploids, thus allowing population genetic analyses across ploidy levels. Based on 472 individuals sampled over four tetraploid and eight octoploid cultivars, six to 55 alleles were detected per locus with an average of 24.1. Genetic diversity was greater in octoploids than tetraploids, as expected from polysomic inheritance. One tetraploid cultivar displayed comparable diversity to the least diverse octoploid cultivars, suggesting breeding history or population history in the native stands of origin may have also affected within-cultivar diversity. Amplicon number at each locus and population relationships suggest autopolyploid origin of octoploids within upland tetraploids with significant cultivar differentiation. However, model-based Bayesian clustering of individuals indicated that closely related octoploid cultivars are difficult to identify, possibly due to slowed differentiation by polysomic inheritance. The analysis of the sampling effect indicated addition of loci is more effective for cultivar identification than more individuals sampled per cultivar. Discriminating power of loci tended to correlate with their variability. The eight loci with greatest discriminatory power within tetraploids were equally successful as 20 loci at identifying the four tetraploid cultivars. The set of markers reported in this study are useful for characterization of switchgrass germplasm and identifying population structure for association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alderson J, Sharp WC, Hanson AA (1995) Grass varieties in the United States. CRC Press, Boca Raton

    Google Scholar 

  • Banks MA, Eichert W, Olsen JB (2003) Which genetic loci have greater population assignment power? Bioinformatics 19:1436–1438

    Article  PubMed  CAS  Google Scholar 

  • Barker RE, Warnke SE (2001) Application of molecular markers to genetic diversity and identity in forage crops. In: Spangeberg G (ed) Molecular breeding of forage crops. Kluwer Academic Publishers, Dordrecht, pp 135–148

    Google Scholar 

  • Barnett FL, Carver RF (1967) Meiosis and pollen stainability in switchgrass, Panicum virgatum L. Crop Sci 7:301–304

    Article  Google Scholar 

  • Brunken JN, Estes JR (1975) Cytological and morphological variation in Panicum virgatum L. The Southwest Nat 19:379–385

    Article  Google Scholar 

  • Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261–2273

    Article  CAS  Google Scholar 

  • Catalán P, Segarra-Moragues JG, Palop-Esteban M, Moreno C, Gonzalez-Candelas F (2006) A Bayesian approach for discriminating among alternative inheritance hypothesis in plant polyploids: the allotetraploid origin of genus Borderea (Dioscoreaceae). Genetics 172:1939–1953

    Article  PubMed  Google Scholar 

  • Chen DH, Ronald P (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. Available at: http://evolution.genetics.washington.edu/phylip.html

  • García-Verdugo C, Fay MF, Granado-Yela C, Rubio de Casas R, Balaguer L, Besnard G, Vargas P (2009) Genetic diversity and differentiation processes in the ploidy series of Olea europaea L.: a multiscale approach from subspecies to insular populations. Mol Ecol 18:454–467

    Article  PubMed  Google Scholar 

  • Gunter LE, Tuskan GA, Wullschleger SD (1996) Diversity among populations of switchgrass based on RAPD markers. Crop Sci 36:1017–1022

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternay ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock AS, Chase A (1950) Manual of the grasses of the United States. US Department of Agriculture Miscellaneous Publication 200, Washiington

    Google Scholar 

  • Hopkins AA, Taliaferro CM, Murphy CD, Christian D (1996) Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci 36:1192–1195

    Article  Google Scholar 

  • Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36:1049–1052

    Article  Google Scholar 

  • Hultquist SJ, Vogel KP, Lee D, Arumuganathan K, Kaeppler S (1997) DNA content and chloroplast DNA polymorphisms among switchgrasses from remnant Midwestern prairies. Crop Sci 37:595–598

    Article  Google Scholar 

  • Jarne P, David P (2008) Quantifying inbreeding in natural populations of hermaphroditic organisms. Heredity 100:431–439

    Article  PubMed  CAS  Google Scholar 

  • Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based SSR markers. Crop Sci 41:1565–1572

    Article  CAS  Google Scholar 

  • Le Comber SC, Ainouche ML, Kovarik A, Leitch AR (2010) Making a functional diploid: from polysomic to disomic inheritance. New Phytol 186:113–122

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42:1800–1805

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP, Caha C, Lee DJ (2001) Meiotic stability, chloroplast DNA polymorphisms, and morphological traits of upland x lowland switchgrass reciprocal hybrids. Crop Sci 41:1579–1583

    Article  Google Scholar 

  • McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg 28:515–535

    Article  Google Scholar 

  • McMillan C (1959) The role of ecotype variation in the distribution of the central grassland of North America. Ecol Monogr 29:285–308

    Article  Google Scholar 

  • McMillan C, Weiler J (1959) Cytogeography of Panicum virgatum in central North America. Am J Bot 46:590–593

    Article  Google Scholar 

  • Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110:1372–1383

    Article  PubMed  CAS  Google Scholar 

  • Missaoui AM, Paterson AH, Bouton JH (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Evol 53:1291–1302

    Article  CAS  Google Scholar 

  • Moody ME, Mueller LD, Soltis DE (1993) Genetic variation and random genetic drift in autotetraploid populations. Genetics 134:649–657

    PubMed  CAS  Google Scholar 

  • Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg Res 1:136–146

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nielsen E (1944) Analysis of variation in Panicum virgatum. J Ag Res 69:327–353

    Google Scholar 

  • Obbard DJ, Harris SA, Pannell JR (2006) Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity 97:296–303

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing, and multilocus interactions. Genetics 185:745–760

    Article  PubMed  CAS  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  PubMed  CAS  Google Scholar 

  • Porter CL (1966) An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 47:980–992

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    Article  PubMed  Google Scholar 

  • Tobias C, Hayden D, Twigg P, Sarath G (2006) Genic microsatellite markers derived from EST sequences of switchgrass (Panicum virgatum L.). Mol Ecol Notes 6:185–187

    Article  CAS  Google Scholar 

  • Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J et al (2008) Comparative Genomics in Switchgrass Using 61, 585 High-Quality Expressed Sequence Tags. Plant Genome 1:111–124

    Article  CAS  Google Scholar 

  • Vogel KP, Jung HJG (2001) Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 20:15–49

    Google Scholar 

  • Vogel KP, Haskins FA, Gorz HJ, Anderson BA, Ward JK (1991) Registration of ‘Trailblazer’ switchgrass. Crop Sci 31:1388

    Article  Google Scholar 

  • Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (1996) Registration of ‘Shawnee’ switchgrass. Crop Sci 36:1713

    Article  Google Scholar 

  • Wang J, Dobrowolski MP, Cogan NOI, Forster JW, Smith KF (2009) Assignment of individual genotypes to specific forage cultivars of perennial ryegrass based SSR markers. Crop Sci 49:49–58

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 6:1358–1370

    Article  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Melanie Harrison-Dunn and Gautam Sarath for critical review of the manuscript. The US Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Tobias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, M., Lanzatella, C. & Tobias, C.M. Single-locus EST-SSR markers for characterization of population genetic diversity and structure across ploidy levels in switchgrass (Panicum virgatum L.). Genet Resour Crop Evol 58, 919–931 (2011). https://doi.org/10.1007/s10722-010-9631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9631-z

Keywords

Navigation