Skip to main content

Advertisement

Log in

Genetic diversity and differentiation of cultivated ginseng (Panax ginseng C. A. Meyer) populations in North-east China revealed by inter-simple sequence repeat (ISSR) markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Panax ginseng C. A. Meyer is a medicinally important herb with a long history of cultivation, and includes three cultivated types, viz. garden ginseng (GGS), forest ginseng (FGS) and transplanted wild ginseng (TGS). In the present study, inter-simple sequence repeat (ISSR) markers were employed to investigate the genetic variability in 282 individuals, which corresponded to 16 cultivated ginseng populations. Genetic diversity was high at the species level (h = 0.2886; I = 0.4382; PPB = 98.96%), but relatively lower at the cultivated-type level (GGS: h = 0.2294, I = 0.3590, PPB = 85.42%; FGS: h = 0.1702, I = 0.2559, PPB = 57.29%; TGS: h = 0.2021, I = 0.3125, PPB = 76.04%). The hierarchical analysis of molecular variance (AMOVA) revealed pronounced genetic differentiation among populations (Φ ST = 53.94%), which was confirmed by the gene differentiation coefficient (G ST = 0.4910) and low gene flow (N m = 0.5184). Both Principal Coordinates Analysis (PCoA) and UPGMA cluster analysis supported the clustering of all 16 populations into three groups, corresponding to the three cultivated types, among which there occurred remarkable genetic differentiation (Φ ST = 37.43%). Pronounced genetic differentiation was also detected among populations within the three cultivated types (GGS: Φ ST = 40.83%, G ST = 0.3187, N m = 1.0691; FGS: Φ ST = 22.85%, G ST = 0.2328, N m = 1.6480; TGS: Φ ST = 30.68%, G ST = 0.2540, N m = 1.4686). Mantel test indicated no significant correlation between geographic and genetic distances at both species and cultivated-type levels (P > 0.05). These findings have profound implications for the sustainable utilization of this precious medicinal herb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artyukova EV, Kozyrenko MM, Reunova GD, Muzarok TI, Zhuravlev YN (2000) RAPD analysis of genome variability of planted ginseng, Panax ginseng. Mol Biol 34:297–302

    Article  CAS  Google Scholar 

  • Artyukova EV, Kozyrenko MM, Koren OG, Muzarok TI, Reunova GD, Zhuravlev YN (2004) RAPD and allozyme analysis of genetic diversity in Panax ginseng C. A. Meyer and P. quinquefolius L. Russ J Genet 40:178–185

    Article  CAS  Google Scholar 

  • Bai D, Brandle J, Reeleder R (1997) Genetic diversity in North American ginseng (Panax quinquefolius L.) grown in Ontario detected by RAPD analysis. Genome 40:111–115

    Article  PubMed  CAS  Google Scholar 

  • Chen Y (1987) Handbook of the seeds of medicinal plants. People’s Medical Publishing House, Beijing

    Google Scholar 

  • Cruse-Sanders JM, Hamrick JL (2004) Genetic diversity in harvested and protected populations of wild American ginseng, Panax quinquefolius L. (Araliaceae). Am J Bot 91:540–548

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duan CL, Xiao FH, Wen GS, Cui XM, Chen ZJ, Wang JB (2003) Molecular identification on variable traits of Wenshan Panax notoginseng cultivated population. Res Practice Chin Med z1:13–16

    Google Scholar 

  • Editorial Committee of the Flora of China (1978) Flora of china (Vol. 54). Science Press, Beijing

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and germplasm resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hogbin PM, Peakall R (1999) Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conserv Biol 13:514–522

    Article  Google Scholar 

  • Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56:2368–2373

    PubMed  Google Scholar 

  • Jin H, Zhou JW (2007) Studies upon the growth and cultivation of forest ginseng. Renshen Yanjiu 19:2–5

    Google Scholar 

  • Li F-Y (2006) Panax ginseng and American ginseng. China Agricultural Scientech Press, Beijing

    Google Scholar 

  • Li TSC, Mazza G (1999) Correlations between leaf and soil mineral concentrations and ginsenoside contents in American ginseng. HortScience 34:85–87

    CAS  Google Scholar 

  • Li M-M, Cai Y-L, Qian Z-Q, Zhao G-F (2009) Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation. Genet Resour Crop Evol 56:455–464

    Article  CAS  Google Scholar 

  • Lu X, Liu L, Gong Y, Zhao L, Song X, Zhu X (2009) Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci Horticult 122:645–648

    Article  CAS  Google Scholar 

  • Ma XJ, Wang XQ, Xu ZX, Xiao PG, Hong DY (1998) RAPD variation within and among populations of ginseng cultivars. Acta Bot Sin 42:587–590

    Google Scholar 

  • Ma X, Wang X, Sun S, Xiao P, Hong D (1999) A study on RAPD fingerprints of wild mountain ginseng (Panax ginseng). Acta Pharm Sin 34:312–316

    CAS  Google Scholar 

  • Ma XJ, Wang XQ, Xiao PG, Hong DY (2000) A study on AFLP fingerprinting of land races of Panax ginseng L. Chin J Chin Mater Med 25:707–710

    CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Ngan F, Shaw P, But P, Wang J (1999) Molecular authentication of Panax species. Phytochemistry 50:787–791

    Article  PubMed  CAS  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Park H (2003) The history of ginseng cultivation in the Orient. Acta-horticulturae 620:453–460

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pfeifer M, Jetschke G (2006) Influence of geographical isolation on genetic diversity of Himantoglossum hircinum (Orchidaceae). Folia Geobot 41:3–20

    Article  Google Scholar 

  • Qiu YX, Zong M, Yao Y, Chen BL, Zhou XL, Chen ZL, Fu CX (2009) Genetic variation in wild and cultivated rhizoma corydalis revealed by ISSRs markers. Planta Med 75:94

    Article  PubMed  CAS  Google Scholar 

  • Roy SC, Chakraborty BN (2009) Genetic diversity and relationships among tea (Camellia sinensis) cultivars as revealed by RAPD and ISSR based fingerprinting. Indian J Biotechnol 8:370–376

    CAS  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Shao AJ, Li X, Huang LQ, Wei JH, Lin SF (2004) Genetic analysis of cultivated ginseng population with the assistance of RAPD technology. Chin J Chin Mater Med 29:1033–1036

    CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • State Committee of the Russian Federation for Environmental Protection (1988) Red data book of Russian federation. Rosagropromizdat, Moscow

    Google Scholar 

  • State Environmental Protection Administration of PR China, Institute of Botany of the Chinese Academy of Sciences (1987) List of rare and endangered plants in China. Science Press, Beijing

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Wang L-Q (2001) History of ginseng cultivation in China. Renshen Yanjiu 13:46–48

    Google Scholar 

  • Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167–177

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531

    Article  PubMed  CAS  Google Scholar 

  • Xu YH, Song XD, Zhou JW, Du YZ (2009) Advances in research on genetic diversity in ginseng. Renshen Yanjiu 21:16–18

    Google Scholar 

  • Yeh FC, Yang R-C, Boyle TBJ, Ye Z-H, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada

    Google Scholar 

  • Zhao YH, Gu XH, Wu LJ, You W (2007) Researches on categories, characteristics, and utilization value of cultivated ginseng germplasm resources. Chin Trad Herb Drugs 38:294–296

    Google Scholar 

  • Zhu WQ, Cui ZL, Gao S, Gao SJ, Gao F, Tang BZ (2003) Technical highlights of planting Panax ginseng in forest. J Liaoning For Sci Tech 6:45–46

    Google Scholar 

  • Zhuravlev YN, Koren OG, Reunova GD, Artyukova EV, Kozyrenko MM, Muzarok TI, Kats IL (2004) Ginseng conservation program in Russian Primorye: genetic structure of wild and cultivated populations. J Ginseng Res 28:60–66

    Article  Google Scholar 

  • Zhuravlev YN, Koren OG, Reunova GD, Muzarok TI, Gorpenchenko TY, Kats IL, Khrolenko YA (2008) Panax ginseng natural populations: their past, current state and perspectives. Acta Pharmacol Sin 29:1127–1136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fund for Modernization of Traditional Chinese Medicine of Shanghai Science and Technology Committee (08DZ1972500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Li, J., Yang, XL. et al. Genetic diversity and differentiation of cultivated ginseng (Panax ginseng C. A. Meyer) populations in North-east China revealed by inter-simple sequence repeat (ISSR) markers. Genet Resour Crop Evol 58, 815–824 (2011). https://doi.org/10.1007/s10722-010-9618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9618-9

Keywords

Navigation