Skip to main content
Log in

ISSR variation within and among wild Brassica juncea populations: implication for herbicide resistance evolution

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

There is a need to understand whether weed genetic diversity is the same among different populations, especially between those exposed to herbicide selection and other without exposure history. Inter-simple sequence repeat (ISSR) were used to assess level and patterns of genetic diversity in wild Brassica juncea (L.) Czern. et Coss. populations. A total of 93 plants from 24 wild populations in China were analysed by eight primers resulting in 86 highly reproducible ISSR bands. The analysis of molecular variance (AMOVA) with distances among individuals corrected for the dominant nature of ISSRs showed that most of the variation (54.09%) occurred among populations, and the remaining 45.91% variance was attributed to differences among individuals within populations. The high differentiation was, perhaps, due to limited gene flow (Nm < 1.0) of this species. Though highest gene diversity was observed in resistant B. juncea population, the overall distribution of diversity across China was not geographic dependent. High F ST value (0.541) corroborated AMOVA partitioning and provided significant evidence for population differentiation in wild B. juncea. UPGMA cluster analyses, based on Nei’s genetic distance, revealed grouping pattern geographically. Based on these results, the factors affect weed population genetic diversity and implication for herbicide resistance evolution were discussed in the context of transgenic crops advent and increasing herbicide usage in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baucom RS, Mauricio R (2004) Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proc Natl Acad Sci USA 101:13386–13390. doi:10.1073/pnas.0404306101

    Article  CAS  PubMed  Google Scholar 

  • Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theor Appl Genet 84:303–306. doi:10.1007/BF00229487

    Article  Google Scholar 

  • Bornet B, Branchard M (2001) Non anchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215. doi:10.1007/BF02772892

    Article  CAS  Google Scholar 

  • Cambell DR (1991) Comparing pollen dispersal and gene flow in a natural population. Evol Int J Org Evol 45:1965–1968. doi:10.2307/2409845

    Google Scholar 

  • Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363:620–623. doi:10.1038/363620a0

    Article  Google Scholar 

  • Culpepper AS (2006) Glyphosate-induced weed shifts. Weed Technol 20:277–281. doi:10.1614/WT-04-155R.1

    Article  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586. doi:10.1038/nbt0602-581

    Article  CAS  PubMed  Google Scholar 

  • Dawson IK, Simons AJ, Waugh R, Powell W (1995) Diversity and genetic differentiation among subpopulations of Gliricidia sepium revealed by PCR-based assays. Heredity 74:10–18. doi:10.1038/hdy.1995.2

    Article  CAS  PubMed  Google Scholar 

  • Eckert JE (1933) The flight range of the honeybee. J Agric Res 47:257–285

    Google Scholar 

  • Ellstrand NC, Devlin B, Marshall DL (1989) Gene flow by pollen into small populations: data from experimental and natural stands of wild radish. Proc Natl Acad Sci USA 86:9044–9047. doi:10.1073/pnas.86.22.9044

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondria DNA restriction sites. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Fu J, Zhang M-F, Qi X-H (2006) Genetic diversity of traditional Chinese mustard crops Brassica juncea as revealed by phenotypic differences and RAPD markers. Genet Resour Crop Evol 53:1513–1519. doi:10.1007/s10722-005-7763-3

    Article  CAS  Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694. doi:10.1614/0043-1745(2000)048[0688:PFBHRB]2.0.CO;2

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics. Breeding and Genetic Resources, Sinauer, Sunderland, MA, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Heap IM, LeBaron H (2001) Introduction and overview of resistance. In: Powles SB, Shaner DL (eds) Herbicide resistance and world grains. CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  • Hidayat I, Baker J, Preston C (2006) Pollen-mediated gene flow between paraquat-resistant and susceptible hare barley (Hordeum leporinum). Weed Sci 54:685–689. doi:10.1614/WS-05-156R.1

    Article  CAS  Google Scholar 

  • Holt RD, Hochberg ME (1997) When is biological control evolutionarily stable (or is it?). Ecology 78:1673–1683

    Google Scholar 

  • Huangfu C-H, Song X-L, Qiang S, Zhang H-J (2007) Response of wild Brassica juncea populations to glyphosate. Pest Manag Sci 63:1133–1140. doi:10.1002/ps.1436

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MJ, Aziz N, Saeed NA, Zafar Y, Malik KA (1997) Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet 94:139–144. doi:10.1007/s001220050392

    Article  CAS  PubMed  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jain A, Bhatia S, Banga SS, Prakash S, Lakshmikumaran M (1994) Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor Appl Genet 88:116–122. doi:10.1007/BF00222403

    Article  CAS  Google Scholar 

  • Jasieniuk M, Bruie-Babel AL, Morrisson IN (1996) The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176–193

    CAS  Google Scholar 

  • Lanner C, Bryngelsson T, Gustafson M (1997) Relationship of wild Brassica species with chromosome number 2n = 18, based on RFLP studies. Genome 40:302–308. doi:10.1139/g97-042

    Article  CAS  PubMed  Google Scholar 

  • Lavigne C, Klein EK, Vallee′ P, Pierre J, Godelle B, Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor Appl Genet 96:886–896. doi:10.1007/s001220050816

    Article  Google Scholar 

  • Li A, Ge S (2001) Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Ann Bot (Lond) 87:585–590. doi:10.1006/anbo.2001.1390

    Article  CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–69. doi:10.1146/annurev.es.15.110184.000433

    Article  Google Scholar 

  • Lutman PJW (1993) The occurence and persistence of volunteer oilseed rape (Brassica napus). Asp Appl Biol 35:29–36

    Google Scholar 

  • Martin JP, Sanchez-Yelemo MD (2000) Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter simple sequence repeat markers. Theor Appl Genet 101:1234–1241. doi:10.1007/s001220051602

    Article  CAS  Google Scholar 

  • Mengistu LW, Messersmith CG, Christoffers MJ (2005) Genetic diversity of herbicide-resistant and -susceptible Avena fatua populations in North Dakota and Minnesota. Weed Res 45:413–423. doi:10.1111/j.1365-3180.2005.00473.x

    Article  Google Scholar 

  • Moreno S, Mart JP, Ortiz JM (1998) Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 101:117–125. doi:10.1023/A:1018379805873

    Article  CAS  Google Scholar 

  • Moyes CL, Dale PJ (1999) Organic farming and gene transfer from genetically modified crops. John Innes Centre, Norwich, UK

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. doi:10.1073/pnas.70.12.3321

    Article  CAS  PubMed  Google Scholar 

  • Neve P, Powles S (2005) Recurrent selection with suboptimal rates of the herbicide diclofop-methyl result in a rapid increase in population level resistance in Lolium rigidum. Theor Appl Genet 110:1154–1166. doi:10.1007/s00122-005-1947-2

    Article  CAS  PubMed  Google Scholar 

  • Owen MDK (2001) World maize/soybean and herbicide resistance. In: Powles SB, Shaner DL (eds) Herbicide resistance and world grains. CRC Press, Boca Raton, pp 101–163

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot 55:1–57

    Google Scholar 

  • Preston C, Tardif FJ, Christopher JT, Powles SB (1996) Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic Biochem Physiol 54:123–134. doi:10.1006/pest.1996.0016

    Article  CAS  Google Scholar 

  • Qian W, Ge S, Hong D-Y (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449. doi:10.1007/s001220051665

    Article  CAS  Google Scholar 

  • Rakow G, Woods DL (1987) Outcrossing in rape and mustard under Saskatchewan prairie conditions. Can J Plant Sci 67:147–151

    Article  Google Scholar 

  • Ramsay G, Thompson C, Neilson S, Mackay GR (1999) Honeybees as vectors of GM oilseed rape pollen. In: Lutman PJW (ed) Gene flow and agriculture-relevance for transgenic crops, BCPC (British Crop Protection Council) Symposium Proceedings No 72. British Crop Protection Council, Nottingham, pp 209–214

    Google Scholar 

  • Ramsey G, Thompson C, Squire G (2003) Quantifying landscape- scale gene flow in oilseed rape. Final report on Project RG0216. Defra, London, p 48

    Google Scholar 

  • Ren M-X, Zhang Q-G, Zhang D-Y (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45:236–244. doi:10.1111/j.1365-3180.2005.00445.x

    Article  CAS  Google Scholar 

  • Rieseberg LH, Burke JM (2001) The biological reality of species: gene flow, selection, and collective evolution. Taxon 50:47–67. doi:10.2307/1224511

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc. Numerical taxonomy and multivariate analysis system. Version 2.0. Department of Ecology and Evolution. State University of New York, Stony Brook, NY

    Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal location and population dynamics. Proc Natl Acad Sci USA 91:5466–5470. doi:10.1073/pnas.91.12.5466

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792. doi:10.1126/science.3576198

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Obsorn TC, Williams PH (1988a) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794. doi:10.1007/BF00265606

    Article  CAS  Google Scholar 

  • Song KM, Obsorn TC, Williams PH (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 2. Preliminary analysis of sub-species within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600. doi:10.1007/BF00260914

    Article  CAS  Google Scholar 

  • Srivastava A, Gupta V, Pental D, Pradhan AK (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199. doi:10.1007/s001220051635

    Article  CAS  Google Scholar 

  • Thompson CE, Squire G, Mackay GR, Bradshaw JE, Crawford J, Ramsay G (1999) Regional patterns of gene flow and its consequences for GM oilseed rape. In: Lutman PJW (ed) Gene flow and agriculture-relevance for transgenic crops, BCPC (British Crop Protection Council) Symposium Proceedings No 72. British Crop Protection Council, Nottingham, pp 95–100

    Google Scholar 

  • Timmons AM, O’Brien ET, Charters YM, Dubbels SJ, Wilkinson MJ (1995) Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica 85:417–423. doi:10.1007/BF00023975

    Article  Google Scholar 

  • Yap I, Nelson RJ (1996) WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Papers Series 14. Manila, Philippines: International Rice Research Institute

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR) – anchored polymerase chain reaction amplification. Genomics 20:176–183. doi:10.1006/geno.1994.1151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Basic Research and Development Program (2007CB109202), Natural National Science Foundation of China (30400059). Reviewers of this manuscript are gratefully acknowledged for providing excellent comments and critical suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Qiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huangfu, Ch., Song, Xl. & Qiang, S. ISSR variation within and among wild Brassica juncea populations: implication for herbicide resistance evolution. Genet Resour Crop Evol 56, 913–924 (2009). https://doi.org/10.1007/s10722-009-9410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9410-x

Keywords

Navigation