Skip to main content
Log in

Processes affecting genetic structure and conservation: a case study of wild and cultivated Brassica rapa

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

When planning optimal conservation strategies for wild and cultivated types of a plant species, a number of influencing biological and environmental factors should be considered from the outset. In the present study Brassica rapa was used to illustrate this: to develop Scandinavian conservation strategies for wild and cultivated B. rapa, DNA-marker analysis was performed on 15 cultivated and 17 wild accessions of B. rapa plus 8 accessions of the cross compatible B. napus. The B. rapa cultivars were bred in Sweden and Finland in 1944–1997 and the wild B. rapa material was collected from Denmark, Sweden and United Kingdom. The B. napus accessions were bred within the last 20 years in the Scandinavian countries. Results were based on scoring of 131 polymorphic ISSR markers in the total plant material. A Bayesian Markov chain Monte Carlo (MCMC) approach implemented in NewHybrids demonstrated a clear distinction of B. rapa and B. napus individuals except for three individuals that seemed to be backcrosses. The backcrossed hybrids descended from two Swedish populations, one wild and one escaped. The overall pattern of genetic variation and structure in B. rapa showed that cultivated and wild B. rapa accessions formed two almost separated clusters. Geographical origin and breeding history of cultivars were reflected in these genetic relationships. In addition, wild populations from Denmark and Sweden seemed to be closely related, except for a Swedish population, which seemingly was an escaped cultivar. The study point to that many processes, e.g. spontaneous introgression, naturalisation, breeding and agricultural practise affected the genetic structure of wild and cultivated B. rapa populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Allainguillaume J, Alexander M, Bullock JM, Saunders M, Allender CJ, King G, Ford CS, Wilkinson MJ (2006) Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats. Mol Ecol 15:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  CAS  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1996) Hybridisation among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open-pollination conditions in the field. Plant Breed 115:470–473. doi:10.1111/j.1439-0523.1996.tb00959.x

    Article  Google Scholar 

  • Bolaric S, Barth S, Melchinger AE, Posselt UK (2005) Molecular genetic diversity within and among German ecotypes in comparison to European perennial ryegrass cultivars. Plant Breed 124:257–262. doi:10.1111/j.1439-0523.2005.01108.x

    Article  CAS  Google Scholar 

  • Cáceres M, Oliva F, Font X (2003) GINKGO, a multivariate analysis program oriented towards distance-based classifications. XXVII Congreso Nacional de Estadística e Investigación Opetative. Lleida. Version 1.4, http://biodiver.bio.ub.es/vegana/. Accessed June 2007

  • Chao-zhi MA, Ting-dong FU, Tuevesson S, Gertsson B (2003) Genetic diversity of Chinese and Swedish rapeseed (Brassica napus L.) analyzed by inter-simple sequence repeats (ISSRs). Agric Sci China 2:137–143

    Google Scholar 

  • Charters YM, Robertson A, Wilkinson MJ (1996) PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5′-ancored simple sequence repeat (SSR) primers. Theor Appl Genet 92:442–447. doi:10.1007/BF00223691

    Article  CAS  Google Scholar 

  • Crouch JH, Lewis BG, Lydiate DJ, Mithen R (1995) Genetic diversity of wild, weedy and cultivated forms of Brassica rapa. Heredity 74:491–496. doi:10.1038/hdy.1995.69

    Article  Google Scholar 

  • Downey RK (1990) Canola: a quality Brassica oilseed. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 211–217

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383. doi:10.1046/j.1471-8286.2002.00251.x

    Article  CAS  Google Scholar 

  • EU funded project meeting GEN RES 109-112 in Vila Real, Portugal, in February 2002

  • Fjellheim S, Rognli OA (2005a) Genetic diversity within and among Nordic meadow fescue (Festuca pratensis Huds.) cultivars determined on the basis of AFLP markers. Crop Sci 45:2081–2086. doi:10.2135/cropsci2005.0091

    Article  CAS  Google Scholar 

  • Fjellheim S, Rognli OA (2005b) Molecular diversity of local Norwegian meadow fescue (Festuca pratensis Huds.) populations and Mordic cultivars—consequences for management and utilization. Theor Appl Genet 111:640–650. doi:10.1007/s00122-005-2006-8

    Article  PubMed  CAS  Google Scholar 

  • Fowler C, Hodgkin T (2004) Plant genetic resources for food and agriculture; assessing global availability. Annu Rev Environ Resour 29:143–179

    Article  Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 6:2278–2292

    Article  Google Scholar 

  • Hammer K (2003) A paradigm shift in the discipline of plant genetic resources. Genet Resour Crop Evol 50:3–10

    Article  CAS  Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative, B. rapa L. in a natural population. Genet Resour Crop Evol 48:621–627

    Article  Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283

    Article  PubMed  CAS  Google Scholar 

  • Hauser T, Jørgensen RB, Østergaard H (1997) Preferential exclusion of hybrids in mixed pollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae). Am J Bot 84:756–762

    Article  Google Scholar 

  • Johannessen MM, Andersen BA, Jørgensen RB (2006a) Competition affects gene flow from oilseed rape (female) to Brassica rapa (male). Heredity 96:360–367

    Article  PubMed  CAS  Google Scholar 

  • Johannessen MM, Damgaard C, Andersen BA, Jørgensen RB (2006b) Competition affects the production of first backcross offspring on F1-hybrids, Brassica napus × B. rapa. Euphytica 150:17–25

    Article  Google Scholar 

  • Jørgensen RB, Andersen BA (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81:1620–1626

    Article  Google Scholar 

  • Jørgensen RB, Amitzbøl H, Hansen LB, Johannessen M, Andersen B, Hauser TP (2004) Gene introgression and consequences in Brassica. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Publishing, Cambridge, pp 253–262

    Google Scholar 

  • Landbo L, Jørgensen RB (1997) Seed germination in weedy Brassica campestris and its hybrids with B. napus; implications for risk assessment of oilseed rape. Euphytica 97:209–216

    Article  Google Scholar 

  • Landbo L, Andersen BA, Jørgensen RB (1996) Natural hybridization between oilseed rape and a wild relative: hybrids among seeds form weedy B. campestris. Hereditas 125:89–91

    Article  Google Scholar 

  • Pertl M, Hauser TP, Damgaard C, Jørgensen RB (2002) Male fitness of oilseed rape (Brassica napus), weedy B. rapa and their F1 hybrids when pollinating B. rapa seeds. Heredity 89:212–218

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reiner H, Holzner W, Ebermann R (1995) The development of turnip-type and oilseed-type Brassica rapa crops from wild-type in Europe—an overview of botanical, historical and linguistic facts. Rapeseed Today Tomorrow 4:1066–1069

    Google Scholar 

  • Schneider S, Roessli R, Excoffier L (2000) ARLEQUIN: a software for population genetics data analysis version 2000. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Scott SE, Wilkinson MJ (1998) Transgene risk is low. Nature 393:320

    Article  CAS  Google Scholar 

  • Thalmann C, Guadagnuolo R, Felber F (2001) Search for spontaneous hybridization between oilseed rape (Brassica napus L.) and wild radish (Raphanus raphanistrum L.) in agricultural zones and evaluation of the genetic diversity of the wild species. Bot Helv 111:107–119

    Google Scholar 

  • U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Van Treuren R, Magda A, Hoekstra R, van Hintum TJL (2004) Genetic and economic aspects of markerassisted reduction of redundancy from wild potato germplasm collection. Genet Resour Crop Evol 51:277–290

    Article  Google Scholar 

  • Vellvé R (1993) The decline of diversity in European agriculture. Ecologist 23:64–69

    Google Scholar 

  • Warwick SI, Simard MJ, Légére A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theor Appl Genet 107:528–539

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Elliott LJ, Allainguillaume J, Shaw MW, Norris C, Welters R, Alexander M, Sweet J, Mason DC (2003) Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science 302:457–459

    Article  PubMed  CAS  Google Scholar 

  • Zhao JJ, Wang XW, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koornneef M, Bonnema G (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Nordic Gene Bank (Alnarp, Sweden), the EU project SIGMEA and the research school SOAR (Research School for Organic Agriculture and Food System).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naja Steen Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, N.S., Poulsen, G., Andersen, B.A. et al. Processes affecting genetic structure and conservation: a case study of wild and cultivated Brassica rapa . Genet Resour Crop Evol 56, 189–200 (2009). https://doi.org/10.1007/s10722-008-9354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9354-6

Keywords

Navigation