Skip to main content
Log in

Resistance gene analog polymorphisms (RGAPs) in wild emmer wheat (Triticum dicoccoides) and their ecological associations

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Using the 8 specific primer pairs based on the conserved motifs of plant resistance genes, the plant disease resistance gene analog polymorphisms (RGAPs) in 15 wild emmer wheat (Triticum dicoccoides) populations from Israel had been detected. High genetic variations at the RGAP loci were observed in T. dicoccoides populations. A total of 254 discernible bands were obtained among 115 accessions, and 192 bands (75.6%) were polymorphic. Each genotype had a unique banding profile, and the genetic similarity coefficient ranged from 0.094 to 0.862. In T. dicoccoides, the proportion of polymorphic loci (P), the genetic diversity (He) and Shannon’s information index were 0.756, 0.362 and 0.541, respectively. The proportion of polymorphic loci (P) per population averaged 0.732 (range: 0.515–0.932); genetic diversity (He) averaged 0.271 (range: 0.212–0.338); and Shannon’s information index averaged 0.404 (range: 0.310–0.493). The coefficients of genetic distance (D) among populations averaged 0.107 (range: 0.043–0.178), and the results of Mantel test (r = 0.168, P = 0.091) showed that the estimates of genetic distance were geographically independent. Neighbor-joining cluster analysis suggested that the genetic relationships of T. dicoccoides populations were associated with their ecogeographic distribution. The hierarchical analysis of molecular variance (AMOVA) and the coefficient of gene differentiation (G ST ) values revealed that most of the variations were presented within populations, although significant differences among populations and regions were also detected. The values of P and Shannon’s information index were negatively correlated with the two factors: Tdd (day–night temperature difference) and Ev (mean annual evaporation), whereas they were positively correlated with one water factor: Rn (mean annual rainfall). The correlation matrix between He in the RGAPs and geographic variables contained 20 significant (P < 0.05) correlations. The present study established that T. dicoccoides in Israel had a considerable amount of genetic variations at RGAP loci at least partly correlated with ecological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker B, Zambryski P, Stazkawicz B, Dinesh-Kumar SP (1997) Signaling in plant–microbe interactions. Science 276:726–733. doi:10.1126/science.276.5313.726

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J et al (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance gene. Science 265:1856–1860. doi:10.1126/science.8091210

    Article  PubMed  CAS  Google Scholar 

  • Burdon JJ, Oates JD, Marshall DR (1983) Interaction between Avena and Puccinia species. I. The wild hosts: Avena barbata Pott ex Link, A. fatua L., A. ludoviciana Durieu. J Appl Ecol 20:571–584. doi:10.2307/2403527

    Article  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705. doi:10.1016/S0092-8674(00)81912-1

    Article  PubMed  CAS  Google Scholar 

  • Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97(3):345–355. doi:10.1007/s001220050905

    Article  CAS  Google Scholar 

  • Clarke DD (1997) The genetic structure of natural pathosystems. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant–parasite interactions. CAB international, Oxon, pp 231–243

    Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analog in maize. Mol Plant Microbe Interact 11:968–978. doi:10.1094/MPMI.1998.11.10.968

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Drake J, Aylive M, Sun Q, Ellis J, Hulbert S et al (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Diaz V, Ferrer E (2003) Genetic variation of populations of Pinus oocarpa revealed by resistance gene analog polymorphism (RGAP). Genome 46:404–410. doi:10.1139/g03-023

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447. doi:10.1007/s001220051089

    Article  CAS  Google Scholar 

  • Fahima T, Röder MS, Wendehake VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29. doi:10.1007/s001220200002

    Article  PubMed  CAS  Google Scholar 

  • Feldman M (1979) Genetic resources of wild wheats and their use in breeding. Monogr Genet Agrar 4:9–26

    Google Scholar 

  • Felsenstein J (2004) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author, Department of Genome Sciences, University of Washington, Seattle

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52. doi:10.1046/j.1365-313X.1997.11010045.x

    Article  PubMed  CAS  Google Scholar 

  • Fourmann M, Charlot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 44:1083–1099. doi:10.1139/gen-44-6-1083

    Article  PubMed  CAS  Google Scholar 

  • Gerechter-Amitai ZK, Van-Silfhout CH, Grama A, Kleitman F (1989) Yr15 a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 43:187–190. doi:10.1007/BF00037912

    Article  Google Scholar 

  • Golenberg EM (1986) Multilocus structure in plant populations: population and genetic dynamics of Triticum dicoccoides. PhD thesis, State University of New York at Stony Brook, New York

  • Grama A, Gerechter-Amitai ZK, Blum A (1983) Wild emmer as a donor of genes for resistance to stripe rust and for high protein content. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Kyoto University, Kyoto, Japan, pp 178–192

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312. doi:10.1146/annurev.phyto.39.1.285

    Article  PubMed  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987. doi:10.1126/science.1359642

    Article  PubMed  CAS  Google Scholar 

  • Keen N, Gelvin S, Long S (1999) Summary of IS-MPMI meeting, July 1999, Amsterdam, The Netherlands. Mol Plant Microbe Interact 12:825–828. doi:10.1094/MPMI.1999.12.10.835

    Article  Google Scholar 

  • Kuang H, Woo SS, Meyers B, Nevo E, Michelmore RW (2005) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant J 16:2870–2894

    Google Scholar 

  • Lanfermeijer FC, Jiang GY, Ferwerda MA, Dijkhuis J, Huan PD, Yang RC et al (2004) The durable resistance gene Tm-22 from tomato confers resistance against TOMV in tobacco and preserves its viral specificity. Plant Sci 167:687–692. doi:10.1016/j.plantsci.2004.04.027

    Article  CAS  Google Scholar 

  • Lawrence GJ, Burdon JJ (1989) Flax rust from Linum marginale: variation in a natural host–population interaction. Can J Bot 67:3192–3198

    Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with a potential for wide application in plants. Nat Genet 14:421–429. doi:10.1038/ng1296-421

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Fahima T, Peng JH, Röder MS, Kirzhner VM, Beiles A et al (2000a) Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel. Theor Appl Genet 101:1029–1038. doi:10.1007/s001220051577

    Article  CAS  Google Scholar 

  • Li YC, Fahima T, Krugman T, Beiles A, Röder MS, Koro AB et al (2000b) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207. doi:10.1023/A:1011545403198

    Article  CAS  Google Scholar 

  • Li GJ, Wu BH, Hou YC, Yan ZH, Zheng YL (2004) Genetic variability of gliadin in Triticum dicoccoides. J Triticeae Crops 24(3):29–33

    CAS  Google Scholar 

  • Li GQ, Li ZF, Yang WY, Zhang Y, He ZH, Xu SC et al (2006) Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai42 and its allelism with Yr24 and Yr26. Theor Appl Genet 112(8):1434–1440. doi:10.1007/s00122-006-0245-y

    Article  PubMed  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF (2002) Molecular characterization of a novel powdery resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29. doi:10.1023/A:1014471113511

    Article  CAS  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176(4):2541–2549. doi:10.1534/genetics.107.075465

    Article  PubMed  CAS  Google Scholar 

  • Mansureh K, Mohammad TH, Abdolreza B, Farshad A (2004) Identification of resistance gene(s) to yellow rust in wheat bulked genomic DNAs using RGAP and RAPD markers. In: The international cereal rusts and powdery mildews conference, John Innes Centre, Norwich, UK, pp 22–27

  • Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Maynard SJ (1998) Evolutionary Genetics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Michelmore R (2000) Genomic approaches to plant disease resistance. Curr Opin Plant Biol 3:125–131. doi:10.1016/S1369-5266(99)00050-3

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth and death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Moseman JG, Nevo E, Gerechter-Amitai ZK (1985) Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25:262–265

    Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325. doi:10.1093/nar/8.19.4321

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nevo E (1983) Genetic resources of wild emmer wheat: structure, evolution and application in breeding. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Kyoto University, Kyoto, Japan, pp 421–431

  • Nevo E (1989) Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, England, pp 121–126

  • Nevo E (1995) Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: news and views. In: Li ZS, Xin ZY (eds) Proceedings of the 8th international wheat genetics symposium. China Agric Sci Press, Beijing, pp 79–87

    Google Scholar 

  • Nevo E (2001) Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement: in the third millennium. Isr J Plant Sci 49:77–91

    Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet 77:421–455. doi:10.1007/BF00305839

    Article  Google Scholar 

  • Nevo E, Golenberg E, Beiles A (1982) Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 62:241–254

    Google Scholar 

  • Nevo E, Noy-Meir I, Beiles A, Krugman T, Agami M (1991) Natural selection of allozyme polymorphisms: micro-geographical spatial and temporal ecological differentiations in wild emmer wheat. Isr J Bot 40:419–450

    CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Population genetics, genetic resources, and genome organization of wheat’s, Triticum dicoccoides. Springer-Verlag, 364 pp

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. doi:10.1111/j.1365-294X.2004.02141.x

    Article  PubMed  CAS  Google Scholar 

  • Ozbek O, Millet E, Anikster Y, Arslan O, Feldman M (2007) Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis. Theor Appl Genet 115:19–26. doi:10.1007/s00122-007-0536-y

    Article  PubMed  CAS  Google Scholar 

  • Pagnotta MA, Nevo E, Beiles A, Porceddu E (1995) Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. 2. DNA diversity detected by PCR. Theor Appl Genet 91:409–414. doi:10.1007/BF00222967

    Article  CAS  Google Scholar 

  • Pahalawatta V, Chen XM (2005) Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Genet Resist 95(4):427–432

    CAS  Google Scholar 

  • Parker MA (1985) Local population differentiation for compatibility in an annual legume and its host-specific pathogen. Evolution Int J Org Evolution 39:713–723. doi:10.2307/2408672

    Google Scholar 

  • Parker MA (1988) Polymorphism for disease resistance in the annual legume Amphicarpaea bracteata. Heredity 60:27–31. doi:10.1038/hdy.1988.5

    Article  Google Scholar 

  • Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ 31(1):39–49

    PubMed  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A et al (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872. doi:10.1007/s001220051145

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Huang QY, Dahan A, Li YC et al (2000) High-density molecular map of chromosome region haboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109(3):199–210. doi:10.1023/A:1017573726512

    Article  PubMed  CAS  Google Scholar 

  • Rajesh PN, Tekeoglu M, Gupta VS, Ranjekar PK, Muehlbauer FJ (2002) Molecular mapping and characterization of an RGA locus RGAPtokin 1-2171 in chickpea. Euphytica 128:427–433. doi:10.1023/A:1021246600340

    Article  CAS  Google Scholar 

  • Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60. doi:10.1007/BF00032033

    Article  Google Scholar 

  • Rong JK, Millet E, Manistersterski J (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126. doi:10.1023/A:1003950431049

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanjukta D, Kaushik G, Gaurab G, Debabrata B (2007) Assessment of genomic diversity of wild and cultivated tomato through resistance gene analogue polymorphism and I2 homologues. Euphytica 154:219–230. doi:10.1007/s10681-006-9290-5

    Article  CAS  Google Scholar 

  • Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516. doi:10.1139/gen-44-4-509

    Article  PubMed  CAS  Google Scholar 

  • Sicard D, Woo SS, Arroyo-Garcia R, Ochoa O, Nguyen D, Korol A et al (1999) Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theor Appl Genet 99:405–418. doi:10.1007/s001220051251

    Article  CAS  Google Scholar 

  • StatSoft Inc (2006) Electronic statistics textbook. StatSoft. WEB, Tulsa

    Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI et al (1997) Identification of molecular markers linked to the Yr15 Stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628. doi:10.1007/s001220050604

    Article  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10 [computer program]. Sinauer Associates, Sunderland, MA

  • Tixier MH, Sourdille P, Roder M, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet Breed 51:175–177

    CAS  Google Scholar 

  • Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J et al (2000) Mapping quantitative and qualitative disease resistance genes in a double haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589. doi:10.1007/s001220051519

    Article  CAS  Google Scholar 

  • Van-Silfhout CH, Gerechter-Amitai ZK (1988) Adult plant resistance to yellow rust in wild emmer wheat. Neth J Plant Path 94:267–272. doi:10.1007/BF01977317

    Article  Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390. doi:10.1086/282379

    Article  Google Scholar 

  • Wang JR, Wei YM, Long XY, Yan ZY, Nevo E, Baum BR, Zheng YL (2008) Molecular evolution of dimeric α-amylase inhibitor genes in wild emmer wheat and its ecological association. BMC Evol Biol 8:91

    Article  PubMed  CAS  Google Scholar 

  • Whal I (1970) Prevalence and geographic distribution of resistance to crown rust in Avena sterilis. Phytopathology 60:746–749

    Article  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115. doi:10.1016/0092-8674(94)90283-6

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Xie CJ, Sun QX, Yang ZM (2003a) Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops 23(2):39–42

    Google Scholar 

  • Xie CJ, Sun QX, Ni ZF (2003b) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106:341–345

    PubMed  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle T, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Canada

    Google Scholar 

  • Young ND (2000) The genetic architecture of resistance. Curr Opin Plant Biol 3:285–290. doi:10.1016/S1369-5266(00)00081-9

    Article  PubMed  CAS  Google Scholar 

  • Zohary D (1970) Centers of diversity and centers of origin. In: Frankel OH, Bennet E (eds) Genetic resources in plants – their exploration and conservation. Blackwell, Oxford, pp 33–42

    Google Scholar 

  • Zohary D (1983) Wild genetic resources of crops in Israel. Isr J Bot 32:97–122

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (863 program 2006AA10Z179 and 2006AA10Z1F8), the Key Technologies R&D Program of China (2006BAD01A02-23 and 2006BAD13B02), and the FANEDD project (200357 and 200458) from Ministry of Education, China. Y.-M. Wei was supported by the Program for New Century Excellent Talents in University of China (NECT-05-0814). Y.-L. Zheng was supported by the Program for Changjiang Scholars and Innovative Research Teams in University of China (IRT0453). E. Nevo acknowledges the support of the Discount Bank Chair of Evolutionary Biology and the Ancell–Teicher Research Foundation of Molecular Genetics and Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Liang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, P., Wei, YM., Chen, GY. et al. Resistance gene analog polymorphisms (RGAPs) in wild emmer wheat (Triticum dicoccoides) and their ecological associations. Genet Resour Crop Evol 56, 121–136 (2009). https://doi.org/10.1007/s10722-008-9351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9351-9

Keywords

Navigation