Skip to main content
Log in

Genetic and bioclimatic variation in Solanum pimpinellifolium

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Solanum pimpinellifolium, due to its close relationship to S. lycopersicum, has been a genetic source for many commercially important tomato traits. It is a wild species found in the coastal areas of Peru and Ecuador. In this study, the genetic variation of S. pimpinellifolium was studied using the diversity found in 10 microsatellites in 248 plants spread throughout its entire distribution area, including Ecuador, which has been underrepresented in previous studies. Peruvian and Ecuadorian accessions are genetically quite differentiated. A possible cause of these differences could be the non-uniform nature of the coastal Ecuadorian and Peruvian climates, seeing as an important correlation between genetic differentiation and climate has been found. In addition, Ecuadorian and south Peruvian accessions have a lower genetic diversity and a higher homozygosity due to their higher autogamy, lower population size, and possible colonization bottlenecks. The Galápagos Islands population is an extreme case, with no diversity, likely caused by a recent colonization from the northern continental Ecuadorian region where genetically identical plants have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnaud A, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248

    Article  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Rafaste N, Bonhomme T (1996) Genetix 4.04 Logiciel sous WindowsTM pour la genetiqué des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier. Website http://www.genetix.univ-montp2.fr/genetix/genetix.htm (Accessed 13 November 2007)

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Bonnet E, Van de Peer Y (2002) zt: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359

    Article  Google Scholar 

  • Caicedo AL, Schall BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570

    Article  Google Scholar 

  • Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci USA 104:2773–2778

    Article  PubMed  CAS  Google Scholar 

  • Cuartero J, Nuez F, Díaz A (1984) Catalog of collections of Lycopersicon and Solanum pennellii from Northwest of Peru. TGC Report 34:43–46

    Google Scholar 

  • Darwin SC, Knapp S, Peralta IE (2003) Tomatoes in the Galápagos Islands: morphology of native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodiv 1:29–54

    Article  Google Scholar 

  • Del Rio AH, Bamberg JB (2002) Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Am J Potato Res 79:335–338

    Article  Google Scholar 

  • Eva HD, de Miranda EE, Di Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimarães M, Elvidge C, Achard F, Belward AS, Bartholomé E, Baraldi A, De Grandi G, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. Office for Official Publications of the European Communities

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282

    Article  PubMed  CAS  Google Scholar 

  • Gower JC (1966) Some distance properties of latent roots and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205

    Article  PubMed  CAS  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19

    Google Scholar 

  • IPGRI (1996) Descriptor for Tomato (Lycopersicon spp.). IPGRI

  • Jump AS, Hunt J, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480

    Article  PubMed  CAS  Google Scholar 

  • Juvik JA, Berlinger MJ, Ben-David T, Rudich J (1982) Resistance among accessions of the genera Lycopersicon and Solanum to four of the main insect pest of tomato in Israel. Phytoparasitica 10:145–156

    Article  Google Scholar 

  • Langella O (2002) Populations 1.2.28, Population genetic software. CNRS

  • Li YC, Fahima T, Krugman T, Beiles A, Röder MS, Korol AB, Nevo E (2000) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207

    Article  CAS  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Aberdeen University Press, Aberdeen

    Google Scholar 

  • Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222

    Article  CAS  Google Scholar 

  • Mason-Gamer RJ, Holsinger KE, Jansen RK (1995) Chloroplast DNA haplotype variation within and among populations of Coreopsis grandiflora. Mol Biol Evol 12:371–381

    CAS  Google Scholar 

  • McGregor CE, van Treuren R, Hoekstra R, van Hintum ThJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156

    Article  PubMed  CAS  Google Scholar 

  • Mieslerova B, Lebeda A, Chetelat RT (2000) Variation in response of wild Lycopersicon and Solanum sp. against tomato powdery mildew (Oidium lycopersici). J Phytopathol 148:303–311

    Article  Google Scholar 

  • Miller P (1754) The gardener’s dictionary. C. Rivington, London

    Google Scholar 

  • Mitton JB, Duran KL (2004) Genetic variation in piñon pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264

    Article  PubMed  CAS  Google Scholar 

  • Monrchen M, Cuguen J, Michaelis G, Hanni C, Saumitou-Laprade P (1996) Abundance and length polymorphism of microsatellite repeats in Beta vulgaris L. Theor Appl Genet 92:326–333

    Article  Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233

    Article  PubMed  CAS  Google Scholar 

  • Nuez F, Cuartero J (1984) Colectas de Lycopersicon y Solanum pennellii en el Noroeste de Perú. Plant Genet Resour Newsl 58:42–45

    Google Scholar 

  • Nuez F, Morales R, Ruíz JJ, Fernández de Córdova P, Soler S, Valdivieso E, Solórzano V (1993) Recolección de especies hortícolas en Ecuador. Plant Genet Resour Newsl 96:29–33

    Google Scholar 

  • Nuez F, Morales R, Prohens J, Fernández de Córdova P, Soler S, Valdivieso E, Solórzano V (1999) Germplasm of Solanaceae horticultural crops in the South of Ecuador. Plant Genet Resour Newsl 120:44–47

    Google Scholar 

  • Nuez F, Picó B (1999) Collections of vegetable crops and wild relatives in the Centre for Conservation and Breeding of the Agricultural Biodiversity (Spain). Plant Genet Resour Newsl 118:68

    Google Scholar 

  • Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galápagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99

    Article  Google Scholar 

  • Owuor ED, Beharav A, Fahima T, Kirzhner VM, Korol AB, Nevo E (2003) Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genet Resour Crop Evol 50:213–223

    Article  CAS  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    PubMed  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2000) Classification of wild tomatoes: a review. Kurtziana 28:45–54

    Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Doyle JJ, McNicol JW, Tingey SV, Rafalski AJ (1996) Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144:793–803

    PubMed  CAS  Google Scholar 

  • Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22

    Article  Google Scholar 

  • Rick CM (1976) Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agr 30:249–259

    Google Scholar 

  • Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hortic 412:21–38

    Google Scholar 

  • Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club 102:376–384

    Article  Google Scholar 

  • Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot 44:69–78

    Google Scholar 

  • Rick CM, Zobel RW, Fobes JF (1974) Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. Proc Natl Acad Sci USA 71:835–839

    Article  PubMed  CAS  Google Scholar 

  • Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170

    Article  Google Scholar 

  • Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Syst Evol 129:31–44

    Article  Google Scholar 

  • Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersion hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298

    Article  Google Scholar 

  • Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic flow in plants. Evol Trends Plants 5:65–84

    Google Scholar 

  • Roselius K, Stephan W, Stadler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763

    Article  PubMed  CAS  Google Scholar 

  • Sifres A, Picó B, Blanca JM, De Frutos R, Nuez F (2007) Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997–98. Genet Resour Crop Evol 54:359–377

    Article  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-kortekass W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272

    Article  Google Scholar 

  • Warnock SJ (1991) Natural habitats of Lycopersicon species. HortScience 26:466–471

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge, UK

    Google Scholar 

Download references

Acknowledgements

We are deeply grateful to Dr. Javier León, Dr. Roberto Mendoza, and Dr. Freddy Zuñiga of the Universidad Nacional de Piura; Dr. Ángel Díaz Celis, and Dr. Umberto Cardoso of the Universidad Nacional Pedro Ruiz Gallo; and to Dr. Rosa de Frutos Illán, Dr. Juan José Ruiz, María José Díez, and Dr. Jaume Prohens of the COMAV Institute. This study wouldn’t have been possible without their assistance and kind affection during the collecting expeditions organized with them throughout the years. The BBVA contributed to the funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Nuez.

Additional information

Elena Zuriaga and José M. Blanca contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuriaga, E., Blanca, J.M., Cordero, L. et al. Genetic and bioclimatic variation in Solanum pimpinellifolium . Genet Resour Crop Evol 56, 39–51 (2009). https://doi.org/10.1007/s10722-008-9340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9340-z

Keywords

Navigation