Skip to main content

Advertisement

Log in

Identification of novel glycosylation events on human serum-derived factor IX

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Human Factor IX is a highly post-translationally modified protein that is an important clotting factor in the blood coagulation cascade. Functional deficiencies in Factor IX result in the bleeding disorder haemophilia B, which is treated with plasma-derived or recombinant Factor IX concentrates. Here, we investigated the post-translational modifications of human serum-derived Factor IX and report previously undescribed O-linked monosaccharide compositions at serine 141 and a novel site of glycosylation. At serine 141 we observed two monosaccharide compositions, with HexNAc1Hex1NeuAc2 dominant and a low level of HexNAc1Hex1NeuAc1. This O-linked site lies N-terminal to the first cleavage site for the activation peptide, an important region of the protein that is removed to activate Factor IX. The novel site is an N-linked site in the serine protease domain with low occupancy in a non-canonical consensus motif at asparagine 258, observed with a HexNAc4Hex5NeuAc2 monosaccharide composition attached. This is the first reported instance of a site of modification in the serine protease domain. The description of these glycosylation events provides a basis for future functional studies and contributes to structural characterisation of native Factor IX for the production of effective therapeutic biosimilars and biobetters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

activation peptide

CID:

collision-induced dissociation

EGF:

epidermal growth factor-like

ER:

endoplasmic reticulum

ETD:

electron-transfer dissociation

Fuc:

fucose

Gal:

galactose

Gla:

γ-glutamic acid

Glc:

glucose

GlcNAc:

N-acetylglucosamine

HCD:

higher-energy C-trap dissociation or beam-type collision-induced dissociation

Hex:

hexose

HexNAc:

N-acetylhexosamine

Hya:

β-hydroxyaspartate

NeuAc:

N-acetylneuraminic acid

Pent:

pentose

Phos:

phosphorylation

PNGase F:

Peptide-N-Glycosidase F

PP:

propeptide

PTMs:

post-translantional modifications

PSMs:

peptide-to-spectrum matches

SP:

signal peptide

Sulf:

sulfation

Xyl:

xylose

References

  1. Di Scipio, R.G., Kurachi, K., Davie, E.W.: Activation of human factor IX (Christmas factor). J. Clin. Invest. 61(6), 1528–1538 (1978). https://doi.org/10.1172/JCI109073

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bond, M., Jankowski, M., Patel, H., Karnik, S., Strang, A., Xu, B., Rouse, J., Koza, S., Letwin, B., Steckert, J., Amphlett, G., Scoble, H.: Biochemical characterization of recombinant factor IX. Semin. Hematol. 35(2 Suppl 2), 11–17 (1998)

    CAS  PubMed  Google Scholar 

  3. Arruda, V.R., Hagstrom, J.N., Deitch, J., Heiman-Patterson, T., Camire, R.M., Chu, K., Fields, P.A., Herzog, R.W., Couto, L.B., Larson, P.J., High, K.A.: Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood. 97(1), 130–138 (2001). https://doi.org/10.1182/blood.V97.1.130

    Article  CAS  PubMed  Google Scholar 

  4. Mathur, A., Zhong, D., Sabharwal, A.K., Smith, K.J., Bajaj, S.P.: Interaction of factor IXa with factor VIIIa. Effects of protease domain Ca2+ binding site, proteolysis in the autolysis loop, phospholipid, and factor X. J. Biol. Chem. 272(37), 23418–23426 (1997). https://doi.org/10.1074/jbc.272.37.23418

    Article  CAS  PubMed  Google Scholar 

  5. Goodeve, A.C.: Hemophilia B: molecular pathogenesis and mutation analysis. J. Thromb. Haemost. 13(7), 1184–1195 (2015). https://doi.org/10.1111/jth.12958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyseng-Williamson, K.A.: Coagulation factor IX (recombinant), albumin fusion protein (Albutrepenonacog Alfa; Idelvion®): a review of its use in haemophilia B. Drugs. 77(1), 97–106 (2016). https://doi.org/10.1007/s40265-016-0679-8

    Article  CAS  Google Scholar 

  7. Turecek, P.L., Abbuhl, B., Tangada, S.D., Chapman, M., Gritsch, H., Rottensteiner, H., Schrenk, G., Mitterer, A., Dietrich, B., Hollriegl, W., Schiviz, A., Horling, F., Reipert, B.M., Muchitsch, E.M., Pavlova, B.G., Scheiflinger, F.: Nonacog gamma, a novel recombinant factor IX with low factor IXa content for treatment and prophylaxis of bleeding episodes. Expert. Rev. Clin. Pharmacol. 8(2), 163–177 (2015). https://doi.org/10.1586/17512433.2015.1011126

    Article  CAS  PubMed  Google Scholar 

  8. Cooley, B., Funkhouser, W., Monroe, D., Ezzell, A., Mann, D.M., Lin, F.C., Monahan, P.E., Stafford, D.W.: Prophylactic efficacy of BeneFIX vs Alprolix in hemophilia B mice. Blood. 128(2), 286–292 (2016). https://doi.org/10.1182/blood-2016-01-696104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franchini, M.: Current management of hemophilia B: recommendations, complications and emerging issues. Expert. Rev. Hematol. 7(5), 573–581 (2014). https://doi.org/10.1586/17474086.2014.947955

    Article  CAS  PubMed  Google Scholar 

  10. Johansson, L., Karpf, D.M., Hansen, L., Pelzer, H., Persson, E.: Activation peptides prolong the murine plasma half-life of human factor VII. Blood. 117(12), 3445–3452 (2011). https://doi.org/10.1182/blood-2010-06-290098

    Article  CAS  PubMed  Google Scholar 

  11. Stanley, T.B., Wu, S.-M., Houben, R.J.T.J., Mutucumarana, V.P., Stafford, D.W.: Role of the propeptide and γ-glutamic acid domain of factor ix for in vitro carboxylation by the vitamin k-dependent carboxylase. Biochemistry. 37(38), 13262–13268 (1998). https://doi.org/10.1021/bi981031y

    Article  CAS  PubMed  Google Scholar 

  12. Jorgensen, M.J., Cantor, A.B., Furie, B.C., Brown, C.L., Shoemaker, C.B., Furie, B.: Recognition site directing vitamin K-dependent gamma-carboxylation resides on the propeptide of factor IX. Cell. 48(2), 185–191 (1987). https://doi.org/10.1016/0092-8674(87)90422-3

    Article  CAS  PubMed  Google Scholar 

  13. Huang, M., Rigby, A.C., Morelli, X., Grant, M.A., Huang, G., Furie, B., Seaton, B., Furie, B.C.: Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat. Struct. Biol. 10(9), 751–756 (2003). https://doi.org/10.1038/nsb971

    Article  CAS  PubMed  Google Scholar 

  14. Hansson, K., Stenflo, J.: Post-translational modifications in proteins involved in blood coagulation. J. Thromb. Haemost. 3(12), 2633–2648 (2005). https://doi.org/10.1111/j.1538-7836.2005.01478.x

    Article  CAS  PubMed  Google Scholar 

  15. Derian, C.K., VanDusen, W., Przysiecki, C.T., Walsh, P.N., Berkner, K.L., Kaufman, R.J., Friedman, P.A.: Inhibitors of 2-ketoglutarate-dependent dioxygenases block aspartyl beta-hydroxylation of recombinant human factor IX in several mammalian expression systems. J. Biol. Chem. 264(12), 6615–6618 (1989)

    CAS  PubMed  Google Scholar 

  16. Fernlund, P., Stenflo, J.: Beta-hydroxyaspartic acid in vitamin K-dependent proteins. J. Biol. Chem. 258(20), 12509–12512 (1983)

    CAS  PubMed  Google Scholar 

  17. Harris R.J., P.D.I., Truong L., Smith K.J.: Partial Phosphorylation of Serine-68 in EGF-1 of Human Factor IX. In: Proceedings of XIth international conference on methods in protein structure analysis 1996

  18. Nishimura, H., Kawabata, S., Kisiel, W., Hase, S., Ikenaka, T., Takao, T., Shimonishi, Y., Iwanaga, S.: Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J. Biol. Chem. 264(34), 20320–20325 (1989)

    CAS  PubMed  Google Scholar 

  19. Harris, R.J., van Halbeek, H., Glushka, J., Basa, L.J., Ling, V.T., Smith, K.J., Spellman, M.W.: Identification and structural analysis of the tetrasaccharide NeuAcα (2→ 6) Galβ (1→ 4) GlcNAcβ (1→ 3) Fucα1→ O-linked to serine 61 of human factor IX. Biochemistry. 32(26), 6539–6547 (1993). https://doi.org/10.1021/bi00077a007

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura, H., Takao, T., Hase, S., Shimonishi, Y., Iwanaga, S.: Human factor IX has a tetrasaccharide O-glycosidically linked to serine 61 through the fucose residue. J. Biol. Chem. 267(25), 17520–17525 (1992)

    CAS  PubMed  Google Scholar 

  21. King, S.L., Joshi, H.J., Schjoldager, K.T., Halim, A., Madsen, T.D., Dziegiel, M.H., Woetmann, A., Vakhrushev, S.Y., Wandall, H.H.: Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv. 1(7), 429–442 (2017). https://doi.org/10.1182/bloodadvances.2016002121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurachi, K., Davie, E.W.: Isolation and characterization of a cDNA coding for human factor IX. Proc. Natl. Acad. Sci. U. S. A. 79(21), 6461–6464 (1982)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agarwala, K.L., Kawabata, S., Takao, T., Murata, H., Shimonishi, Y., Nishimura, H., Iwanaga, S.: Activation peptide of human factor IX has oligosaccharides O-glycosidically linked to threonine residues at 159 and 169. Biochemistry. 33(17), 5167–5171 (1994). https://doi.org/10.1021/bi00183a021

    Article  CAS  PubMed  Google Scholar 

  24. Huang, L.J., Lin, J.H., Tsai, J.H., Chu, Y.Y., Chen, Y.W., Chen, S.L., Chen, S.H.: Identification of protein O-glycosylation site and corresponding glycans using liquid chromatography-tandem mass spectrometry via mapping accurate mass and retention time shift. J. Chromatogr. A 1371(Supplement C), 136–145 (2014). https://doi.org/10.1016/j.chroma.2014.10.046

    Article  CAS  Google Scholar 

  25. Moremen, K.W., Tiemeyer, M., Nairn, A.V.: Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13(7), 448–462 (2012). https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thaysen-Andersen, M., Packer, N.H., Schulz, B.L.: Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol. Cell. Proteomics. 15(6), 1773–1790 (2016). https://doi.org/10.1074/mcp.O115.057638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bertozzi, C.R., Rabuka, D.: Structural basis of glycan diversity. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York (2009)

    Google Scholar 

  28. Chevreux, G., Faid, V., Andre, M.H., Tellier, Z., Bihoreau, N.: Differential investigations from plasma-derived and recombinant factor IX revealed major differences in post-translational modifications of activation peptides. Vox Sang. 104(2), 171–174 (2013). https://doi.org/10.1111/j.1423-0410.2012.01649.x

    Article  CAS  PubMed  Google Scholar 

  29. Lee, L.Y., Moh, E.S., Parker, B.L., Bern, M., Packer, N.H., Thaysen-Andersen, M.: Toward automated N-glycopeptide identification in glycoproteomics. J. Proteome Res. 15(10), 3904–3915 (2016). https://doi.org/10.1021/acs.jproteome.6b00438

    Article  CAS  PubMed  Google Scholar 

  30. Schulz, B.L., Aebi, M.: Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol. Cell. Proteomics. 8(2), 357–364 (2009). https://doi.org/10.1074/mcp.M800219-MCP200

    Article  CAS  PubMed  Google Scholar 

  31. Makino, Y., Omichi, K., Kuraya, N., Ogawa, H., Nishimura, H., Iwanaga, S., Hase, S.: Structural analysis of N-linked sugar chains of human blood clotting factor IX. J. Biochem. 128(2), 175–180 (2000). https://doi.org/10.1093/oxfordjournals.jbchem.a022738

    Article  CAS  PubMed  Google Scholar 

  32. McGraw, R.A., Davis, L.M., Noyes, C.M., Lundblad, R.L., Roberts, H.R., Graham, J.B., Stafford, D.W.: Evidence for a prevalent dimorphism in the activation peptide of human coagulation factor IX. Proc. Natl. Acad. Sci. U. S. A. 82(9), 2847–2851 (1985). https://doi.org/10.1073/pnas.82.9.2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., Perez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yilmaz, S., Tiwary, S., Cox, J., Audain, E., Walzer, M., Jarnuczak, A.F., Ternent, T., Brazma, A., Vizcaino, J.A.: The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47(D1), D442–D450 (2019). https://doi.org/10.1093/nar/gky1106

    Article  CAS  PubMed  Google Scholar 

  34. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J.D., Higgins, D.G.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol. Syst. Biol. 7(1), 539 (2011). https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics. 21(7), 951–960 (2005). https://doi.org/10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  36. Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol nomenclature for graphical representations of glycans. Glycobiology. 25(12), 1323–1324 (2015). https://doi.org/10.1093/glycob/cwv091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Samis, J.A., Kam, E., Nesheim, M.E., Giles, A.R.: Neutrophil elastase cleavage of human factor IX generates an activated factor IX-like product devoid of coagulant function. Blood. 92(4), 1287–1296 (1998)

    Article  CAS  PubMed  Google Scholar 

  38. Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, U.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42(12), 5014–5030 (2013). https://doi.org/10.1039/c3cs35477f

    Article  CAS  PubMed  Google Scholar 

  39. Gil, G.C., Velander, W.H., Van Cott, K.E.: Analysis of the N-glycans of recombinant human factor IX purified from transgenic pig milk. Glycobiology. 18(7), 526–539 (2008). https://doi.org/10.1093/glycob/cwn035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dutta, D., Mandal, C., Mandal, C.: Unusual glycosylation of proteins: beyond the universal sequon and other amino acids. Biochim. Biophys. Acta. 1861(12), 3096–3108 (2017). https://doi.org/10.1016/j.bbagen.2017.08.025

    Article  CAS  Google Scholar 

  41. Faid, V., Denguir, N., Chapuis, V., Bihoreau, N., Chevreux, G.: Site-specific N-glycosylation analysis of human factor XI: identification of a noncanonical NXC glycosite. Proteomics. 14(21–22), 2460–2470 (2014). https://doi.org/10.1002/pmic.201400038

    Article  CAS  PubMed  Google Scholar 

  42. Miletich, J.P., Broze, G.J.: Beta protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites. J. Biol. Chem. 265(19), 11397–11404 (1990)

    CAS  PubMed  Google Scholar 

  43. Liu, T., Qian, W.J., Gritsenko, M.A., Camp 2nd, D.G., Monroe, M.E., Moore, R.J., Smith, R.D.: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res. 4(6), 2070–2080 (2005). https://doi.org/10.1021/pr0502065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grinnell, B.W., Walls, J.D., Gerlitz, B.: Glycosylation of human protein C affects its secretion, processing, functional activities, and activation by thrombin. J. Biol. Chem. 266(15), 9778–9785 (1991)

    CAS  PubMed  Google Scholar 

  45. Kolkman, J.A., Mertens, K.: Insertion loop 256−268 in coagulation factor IX restricts enzymatic activity in the absence but not in the presence of factor VIII. Biochemistry. 39(25), 7398–7405 (2000). https://doi.org/10.1021/bi992735q

    Article  CAS  PubMed  Google Scholar 

  46. Ponder, K.P.: FIXing factor VIII inhibitors. Blood. 119(2), 325–326 (2012). https://doi.org/10.1182/blood-2011-11-389486

    Article  CAS  PubMed  Google Scholar 

  47. Brandstetter, H., Bauer, M., Huber, R., Lollar, P., Bode, W.: X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc. Natl. Acad. Sci. 92(21), 9796–9800 (1995). https://doi.org/10.1073/pnas.92.21.9796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, S.W.W., Pellequer, J.L., Schved, J.F., Giansily-Blaizot, M.: Model of a ternary complex between activated factor VII, tissue factor and factor IX. Thromb. Haemost. 88(1), 74–82 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. Elliott, S., Lorenzini, T., Asher, S., Aoki, K., Brankow, D., Buck, L., Busse, L., Chang, D., Fuller, J., Grant, J., Hernday, N., Hokum, M., Hu, S., Knudten, A., Levin, N., Komorowski, R., Martin, F., Navarro, R., Osslund, T., Rogers, G., Rogers, N., Trail, G., Egrie, J.: Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21(4), 414–421 (2003). https://doi.org/10.1038/nbt799

    Article  CAS  PubMed  Google Scholar 

  50. Hallgren, K.W., Zhang, D., Kinter, M., Willard, B., Berkner, K.L.: Methylation of gamma-carboxylated Glu (Gla) allows detection by liquid chromatography-mass spectrometry and the identification of Gla residues in the gamma-glutamyl carboxylase. J. Proteome Res. 12(6), 2365–2374 (2013). https://doi.org/10.1021/pr3003722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gillis, S., Furie, B.C., Furie, B., Patel, H., Huberty, M.C., Switzer, M., Foster, W.B., Scoble, H.A., Bond, M.D.: Gamma-carboxyglutamic acids 36 and 40 do not contribute to human factor IX function. Protein Sci. 6(1), 185–196 (1997). https://doi.org/10.1002/pro.5560060121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics. 6(11), 1942–1951 (2007). https://doi.org/10.1074/mcp.M700073-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Amanda Nouwens and Peter Josh at The University of Queensland, School of Chemistry and Molecular Biosciences Mass Spectrometry Facility for their assistance and expertise.

Author information

Authors and Affiliations

Authors

Contributions

BLS, CLP, CBH, and LFZ conceived and coordinated this study. All authors designed experiments. CLP performed the experiments and analysed the data. BLS, CLP, LFZ, and DRR reviewed and interpreted the results. CLP and BLS wrote the manuscript. All authors reviewed the results and approved the final version of the manuscript. The authors declare that they have no conflicts of interest with the contents of this article.

Corresponding author

Correspondence to Benjamin L. Schulz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Tables S1, S2 and S3 Byonic Glycan database, Sequest HT and Byonic Results (XLSX 1568 kb)

ESM 2

Supplementary Figs. S1-S5 (PDF 3263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegg, C.L., Zacchi, L.F., Recinos, D.R. et al. Identification of novel glycosylation events on human serum-derived factor IX. Glycoconj J 37, 471–483 (2020). https://doi.org/10.1007/s10719-020-09922-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09922-2

Keywords

Navigation