Skip to main content
Log in

“Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling”

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cummings, R.D., Schnaar, R.L., Esko, J.D., Drickamer, K., Taylor, M.E.: Principles of glycan recognition. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 373–385. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  2. Thompson, A.J., de Vries, R.P., Paulson, J.C.: Virus recognition of glycan receptors. Curr Opin Virol. 34, 117–129 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaltner, H., Toegel, S., Caballero, G.G., Manning, J.C., Ledeen, R.W., Gabius, H.J.: Galectins: their network and roles in immunity/tumor growth control. Histochem. Cell Biol. 147(2), 239–256 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Johannes, L., Jacob, R., Leffler, H.: Galectins at a glance. J. Cell Sci. 131(9), (2018)

  5. Mendez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A.: Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr. Opin. Immunol. 45, 8–15 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Varki, A., Schnaar, R.L., Crocker, P.R.: I-type lectins. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 453–467. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  7. Cummings, R.D., McEver, R.P.: C-type lectins. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 435–452. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  8. Imberty, A., H Prestegard, J.: Structural biology of glycan recognition. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 387–400. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  9. Freeze, H.H., Baum, L., Varki, A.: Glycans in systemic physiology. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 521–526. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  10. Cummings, R.D., Pierce, J.M.: The challenge and promise of glycomics. Chem. Biol. 21(1), 1–15 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McEver, R.P.: Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 107(3), 331–339 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McEver, R.P., Cummings, R.D.: Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100(3), 485–491 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gesner, B.M., Ginsburg, V.: Effect of Glycosidases on the fate of transfused lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 52, 750–755 (1964)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosen, S.D., Bertozzi, C.R.: The selectins and their ligands. Curr. Opin. Cell Biol. 6(5), 663–673 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. Fukuda, M., Hiraoka, N., Yeh, J.C.: C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell-cell interaction. J. Cell Biol. 147(3), 467–470 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Q., Moore, K.L., Smith, D.F., Varki, A., McEver, R.P., Cummings, R.D.: The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells. J. Cell Biol. 115(2), 557–564 (1991)

    Article  CAS  PubMed  Google Scholar 

  17. Moore, K.L., Stults, N.L., Diaz, S., Smith, D.F., Cummings, R.D., Varki, A., McEver, R.P.: Identification of a specific glycoprotein ligand for P-selectin(CD62) on myeloid cells. J. Cell Biol. 118(2), 445–456 (1992)

    Article  CAS  PubMed  Google Scholar 

  18. Moore, K.L., Eaton, S.F., Lyons, D.E., Lichenstein, H.S., Cummings, R.D., McEver, R.P.: The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J. Biol. Chem. 269(37), 23318–23327 (1994)

    CAS  PubMed  Google Scholar 

  19. Sako, D., Chang, X.J., Barone, K.M., Vachino, G., White, H.M., Shaw, G., Veldman, G.M., Bean, K.M., Ahern, T.J., Furie, B., et al.: Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 75(6), 1179–1186 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Wilkins, P.P., McEver, R.P., Cummings, R.D.: Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J. Biol. Chem. 271(31), 18732–18742 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. Wilkins, P.P., Moore, K.L., McEver, R.P., Cummings, R.D.: Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 270(39), 22677–22680 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. De Luca, M., Dunlop, L.C., Andrews, R.K., Flannery Jr., J.V., Ettling, R., Cumming, D.A., Veldman, G.M., Berndt, M.C.: A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding. J. Biol. Chem. 270(45), 26734–26737 (1995)

    Article  PubMed  Google Scholar 

  23. Li, F., Wilkins, P.P., Crawley, S., Weinstein, J., Cummings, R.D., McEver, R.P.: Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J. Biol. Chem. 271(6), 3255–3264 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Pouyani, T., Seed, B.: PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 83(2), 333–343 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Sako, D., Comess, K.M., Barone, K.M., Camphausen, R.T., Cumming, D.A., Shaw, G.D.: A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 83(2), 323–331 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. Epperson, T.K., Patel, K.D., McEver, R.P., Cummings, R.D.: Noncovalent association of P-selectin glycoprotein ligand-1 and minimal determinants for binding to P-selectin. J. Biol. Chem. 275(11), 7839–7853 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Ouyang, Y., Lane, W.S., Moore, K.L.: Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins. Proc. Natl. Acad. Sci. U. S. A. 95(6), 2896–2901 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ju, T., Brewer, K., D'Souza, A., Cummings, R.D., Canfield, W.M.: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem. 277(1), 178–186 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. Ju, T., Cummings, R.D., Canfield, W.M.: Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J. Biol. Chem. 277(1), 169–177 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Leppanen, A., Mehta, P., Ouyang, Y.B., Ju, T., Helin, J., Moore, K.L., van Die, I., Canfield, W.M., McEver, R.P., Cummings, R.D.: A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J. Biol. Chem. 274(35), 24838–24848 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Leppanen, A., Penttila, L., Renkonen, O., McEver, R.P., Cummings, R.D.: Glycosulfopeptides with O-glycans containing sialylated and polyfucosylated polylactosamine bind with low affinity to P-selectin. J. Biol. Chem. 277(42), 39749–39759 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. Leppanen, A., White, S.P., Helin, J., McEver, R.P., Cummings, R.D.: Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J. Biol. Chem. 275(50), 39569–39578 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Leppanen, A., Yago, T., Otto, V.I., McEver, R.P., Cummings, R.D.: Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J. Biol. Chem. 278(29), 26391–26400 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Somers, W.S., Tang, J., Shaw, G.D., Camphausen, R.T.: Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell. 103(3), 467–479 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Krishnamurthy, V.R., Sardar, M.Y., Ying, Y., Song, X., Haller, C., Dai, E., Wang, X., Hanjaya-Putra, D., Sun, L., Morikis, V., Simon, S.I., Woods, R.J., Cummings, R.D., Chaikof, E.L.: Glycopeptide analogues of PSGL-1 inhibit P-selectinin vitro and in vivo. Nat. Commun. 6(6387), (2015)

  36. Krishnamurthy, V.R., Dougherty, A., Kamat, M., Song, X., Cummings, R.D., Chaikof, E.L.: Synthesis of an Fmoc-threonine bearing core-2 glycan: a building block for PSGL-1 via Fmoc-assisted solid-phase peptide synthesis. Carbohydr. Res. 345(11), 1541–1547 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sardar, M.Y.R., Krishnamurthy, V.R., Park, S., Mandhapati, A.R., Wever, W.J., Park, D., Cummings, R.D., Chaikof, E.L.: Synthesis of Lewis(X)-O-Core-1 threonine: a building block for O-linked Lewis(X) glycopeptides. Carbohydr. Res. 452, 47–53 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sardar, M.Y.R., Mandhapati, A.R., Park, S., Wever, W.J., Cummings, R.D., Chaikof, E.L.: Convergent synthesis of Sialyl Lewis(X)- O-Core-1 threonine. J. Organomet. Chem. 83(9), 4963–4972 (2018)

    Article  CAS  Google Scholar 

  39. Wun, T., Styles, L., DeCastro, L., Telen, M.J., Kuypers, F., Cheung, A., Kramer, W., Flanner, H., Rhee, S., Magnani, J.L., Thackray, H.: Phase 1 study of the E-selectin inhibitor GMI 1070 in patients with sickle cell anemia. PLoS One. 9(7), e101301 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Telen, M.J., Wun, T., McCavit, T.L., De Castro, L.M., Krishnamurti, L., Lanzkron, S., Hsu, L.L., Smith, W.R., Rhee, S., Magnani, J.L., Thackray, H.: Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 125(17), 2656–2664 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwizer, D., Patton, J.T., Cutting, B., Smiesko, M., Wagner, B., Kato, A., Weckerle, C., Binder, F.P., Rabbani, S., Schwardt, O., Magnani, J.L., Ernst, B.: Pre-organization of the core structure of E-selectin antagonists. Chemistry. 18(5), 1342–1351 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. Laird, C.T., Hassanein, W., O'Neill, N.A., French, B.M., Cheng, X., Fogler, W.E., Magnani, J.L., Parsell, D., Cimeno, A., Phelps, C.J., Ayares, D., Burdorf, L., Azimzadeh, A.M., Pierson 3rd, R.N.: P- and E-selectin receptor antagonism prevents human leukocyte adhesion to activated porcine endothelial monolayers and attenuates porcine endothelial damage. Xenotransplantation. 25(2), e12381 (2018)

    Article  PubMed  Google Scholar 

  43. Esposito, M., Mondal, N., Greco, T.M., Wei, Y., Spadazzi, C., Lin, S.C., Zheng, H., Cheung, C., Magnani, J.L., Lin, S.H., Cristea, I.M., Sackstein, R., Kang, Y.: Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21(5), 627–639 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang, J., Patton, J.T., Sarkar, A., Ernst, B., Magnani, J.L., Frenette, P.S.: GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood. 116(10), 1779–1786 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kutlar, A., Kanter, J., Liles, D.K., Alvarez, O.A., Cancado, R.D., Friedrisch, J.R., Knight-Madden, J.M., Bruederle, A., Shi, M., Zhu, Z., Ataga, K.I.: Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. Am. J. Hematol. 94(1), 55–61 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Ataga, K.I., Kutlar, A., Kanter, J., Liles, D., Cancado, R., Friedrisch, J., Guthrie, T.H., Knight-Madden, J., Alvarez, O.A., Gordeuk, V.R., Gualandro, S., Colella, M.P., Smith, W.R., Rollins, S.A., Stocker, J.W., Rother, R.P.: Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376(5), 429–439 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. Carlow, D.A., Gossens, K., Naus, S., Veerman, K.M., Seo, W., Ziltener, H.J.: PSGL-1 function in immunity and steady state homeostasis. Immunol. Rev. 230(1), 75–96 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Veerman, K.M., Carlow, D.A., Shanina, I., Priatel, J.J., Horwitz, M.S., Ziltener, H.J.: PSGL-1 regulates the migration and proliferation of CD8(+) T cells under homeostatic conditions. J. Immunol. 188(4), 1638–1646 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. Veerman, K.M., Williams, M.J., Uchimura, K., Singer, M.S., Merzaban, J.S., Naus, S., Carlow, D.A., Owen, P., Rivera-Nieves, J., Rosen, S.D., Ziltener, H.J.: Interaction of the selectin ligand PSGL-1 with chemokines CCL21 and CCL19 facilitates efficient homing of T cells to secondary lymphoid organs. Nat. Immunol. 8(5), 532–539 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. Bannert, N., Craig, S., Farzan, M., Sogah, D., Santo, N.V., Choe, H., Sodroski, J.: Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J. Exp. Med. 194(11), 1661–1673 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kato, Y., Kaneko, M.K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., Matsuura, N., Hasegawa, Y., Suzuki-Inoue, K., Inoue, O., Ozaki, Y., Narimatsu, H.: Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 99(1), 54–61 (2008)

    CAS  PubMed  Google Scholar 

  52. Furukawa, A., Kakita, K., Yamada, T., Ishizuka, M., Sakamoto, J., Hatori, N., Maeda, N., Ohsaka, F., Saitoh, T., Nomura, T., Kuroki, K., Nambu, H., Arase, H., Matsunaga, S., Anada, M., Ose, T., Hashimoto, S., Maenaka, K.: Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRalpha immune cell receptor. J. Biol. Chem. 292(51), 21128–21136 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuroki, K., Wang, J., Ose, T., Yamaguchi, M., Tabata, S., Maita, N., Nakamura, S., Kajikawa, M., Kogure, A., Satoh, T., Arase, H., Maenaka, K.: Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRalpha. Proc. Natl. Acad. Sci. U. S. A. 111(24), 8877–8882 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toleman, C.A., Schumacher, M.A., Yu, S.H., Zeng, W., Cox, N.J., Smith, T.J., Soderblom, E.J., Wands, A.M., Kohler, J.J., Boyce, M.: Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins. Proc. Natl. Acad. Sci. U. S. A. 115(23), 5956–5961 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raman, J., Fritz, T.A., Gerken, T.A., Jamison, O., Live, D., Liu, M., Tabak, L.A.: The catalytic and lectin domains of UDP-GalNAc:polypeptide alpha-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J. Biol. Chem. 283(34), 22942–22951 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhide, G.P., Prehna, G., Ramirez, B.E., Colley, K.J.: The polybasic region of the Polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry. 56(10), 1504–1517 (2017)

    Article  CAS  PubMed  Google Scholar 

  57. Mengeling, B.J., Manzella, S.M., Baenziger, J.U.: A cluster of basic amino acids within an alpha-helix is essential for alpha-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Proc. Natl. Acad. Sci. U. S. A. 92(2), 502–506 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Meel, E., Lee, W.S., Liu, L., Qian, Y., Doray, B., Kornfeld, S.: Multiple domains of GlcNAc-1-phosphotransferase mediate recognition of lysosomal enzymes. J. Biol. Chem. 291(15), 8295–8307 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nowell, P.C.: Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 20, 462–466 (1960)

    CAS  PubMed  Google Scholar 

  60. Cummings, R.D., Kornfeld, S.: Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257(19), 11230–11234 (1982)

    CAS  PubMed  Google Scholar 

  61. Hammarstrom, S., Hammarstrom, M.L., Sundblad, G., Arnarp, J., Lonngren, J.: Mitogenic leukoagglutinin from Phaseolus vulgaris binds to a pentasaccharide unit in N-acetyllactosamine-type glycoprotein glycans. Proc. Natl. Acad. Sci. U. S. A. 79(5), 1611–1615 (1982)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cummings, R.D., Trowbridge, I.S., Kornfeld, S.: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257(22), 13421–13427 (1982)

    CAS  PubMed  Google Scholar 

  63. Chaney, W., Sundaram, S., Friedman, N., Stanley, P.: The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase. J. Cell Biol. 109(5), 2089–2096 (1989)

    Article  CAS  PubMed  Google Scholar 

  64. Stanley, P., Ioffe, E.: Glycosyltransferase mutants: key to new insights in glycobiology. FASEB J. 9(14), 1436–1444 (1995)

    Article  CAS  PubMed  Google Scholar 

  65. Granovsky, M., Fata, J., Pawling, J., Muller, W.J., Khokha, R., Dennis, J.W.: Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6(3), 306–312 (2000)

    Article  CAS  PubMed  Google Scholar 

  66. Shoreibah, M.G., Hindsgaul, O., Pierce, M.: Purification and characterization of rat kidney UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267(5), 2920–2927 (1992)

    CAS  PubMed  Google Scholar 

  67. Shoreibah, M., Perng, G.S., Adler, B., Weinstein, J., Basu, R., Cupples, R., Wen, D., Browne, J.K., Buckhaults, P., Fregien, N., Pierce, M.: Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. J. Biol. Chem. 268(21), 15381–15385 (1993)

    CAS  PubMed  Google Scholar 

  68. Gao, C., Hanes, M.S., Byrd-Leotis, L.A., Wei, M., Jia, N., Kardish, R.J., McKitrick, T.R., Steinhauer, D.A., Cummings, R.D.: Unique binding specificities of proteins toward isomeric asparagine-linked Glycans. Cell Chem Biol. 26(4), 535–547 e534 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kornfeld, K., Reitman, M.L., Kornfeld, R.: The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J. Biol. Chem. 256(13), 6633–6640 (1981)

    CAS  PubMed  Google Scholar 

  70. Kornfeld, R., Ferris, C.: Interaction of immunoglobulin glycopeptides with concanavalin a. J. Biol. Chem. 250(7), 2614–2619 (1975)

    CAS  PubMed  Google Scholar 

  71. Chen, Y.F., Boland, C.R., Kraus, E.R., Goldstein, I.J.: The lectin Griffonia simplicifolia I-A4(GS I-A4) specifically recognizes terminal alpha-linked N-acetylgalactosaminyl groups and is cytotoxic to the human colon cancer cell lines LS174t and SW1116. Int. J. Cancer. 57(4), 561–567 (1994)

    Article  CAS  PubMed  Google Scholar 

  72. Ogata, S., Muramatsu, T., Kobata, A.: Fractionation of glycopeptides by affinity column chromatography on concanavalin A-sepharose. J. Biochem. 78(4), 687–696 (1975)

    Article  CAS  PubMed  Google Scholar 

  73. Baenziger, J.U., Fiete, D.: Structural determinants of concanavalin a specificity for oligosaccharides. J. Biol. Chem. 254(7), 2400–2407 (1979)

    CAS  PubMed  Google Scholar 

  74. Baenziger, J.U., Fiete, D.: Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254(19), 9795–9799 (1979)

    CAS  PubMed  Google Scholar 

  75. Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)gal/GalNAc sequence. J. Biol. Chem. 262(4), 1596–1601 (1987)

    CAS  PubMed  Google Scholar 

  76. Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: Fractionation of sialylated oligosaccharides, glycopeptides, and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Arch. Biochem. Biophys. 254(1), 1–8 (1987)

    Article  CAS  PubMed  Google Scholar 

  77. Cummings, R.D., Kornfeld, S.: Fractionation of asparagine-linked oligosaccharides by serial lectin-agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem. 257(19), 11235–11240 (1982)

    CAS  PubMed  Google Scholar 

  78. Cummings, R.D., Merkle, R.K., Stults, N.L.: Separation and analysis of glycoprotein oligosaccharides. Methods Cell Biol. 32, 141–183 (1989)

    Article  CAS  PubMed  Google Scholar 

  79. Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138, 232–259 (1987)

    Article  CAS  PubMed  Google Scholar 

  80. Merkle, R.K., Cummings, R.D.: Asparagine-linked oligosaccharides containing poly-N-acetyllactosamine chains are preferentially bound by immobilized calf heart agglutinin. J. Biol. Chem. 263(31), 16143–16149 (1988)

    CAS  PubMed  Google Scholar 

  81. Wang, W.C., Cummings, R.D.: The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. J. Biol. Chem. 263(10), 4576–4585 (1988)

    CAS  PubMed  Google Scholar 

  82. Cummings, R.D., Kornfeld, S.: The distribution of repeating [gal beta 1,4GlcNAc beta 1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J. Biol. Chem. 259(10), 6253–6260 (1984)

    CAS  PubMed  Google Scholar 

  83. Patnaik, S.K., Stanley, P.: Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416, 159–182 (2006)

    Article  CAS  PubMed  Google Scholar 

  84. Stanley, P.: Lectin-resistant CHO cells: selection of new mutant phenotypes. Somatic Cell Genet. 9(5), 593–608 (1983)

    Article  CAS  PubMed  Google Scholar 

  85. Novogrodsky, A., Ashwell, G.: Lymphocyte mitogenesis induced by a mammalian liver protein that specifically binds desialylated glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 74(2), 676–678 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pitts, M.J., Yang, D.C.: Mitogenicity and binding properties of beta-galactoside-binding lectin from chick-embryo kidney. Biochem. J. 195(2), 435–439 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Perillo, N.L., Pace, K.E., Seilhamer, J.J., Baum, L.G.: Apoptosis of T cells mediated by galectin-1. Nature. 378(6558), 736–739 (1995)

    Article  CAS  PubMed  Google Scholar 

  88. Perillo, N.L., Marcus, M.E., Baum, L.G.: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med (Berl). 76(6), 402–412 (1998)

    Article  CAS  Google Scholar 

  89. Dias-Baruffi, M., Zhu, H., Cho, M., Karmakar, S., McEver, R.P., Cummings, R.D.: Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J. Biol. Chem. 278(42), 41282–41293 (2003)

    Article  CAS  PubMed  Google Scholar 

  90. Stowell, S.R., Qian, Y., Karmakar, S., Koyama, N.S., Dias-Baruffi, M., Leffler, H., McEver, R.P., Cummings, R.D.: Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180(5), 3091–3102 (2008)

    Article  CAS  PubMed  Google Scholar 

  91. Karmakar, S., Stowell, S.R., Cummings, R.D., McEver, R.P.: Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology. 18(10), 770–778 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karmakar, S., Cummings, R.D., McEver, R.P.: Contributions of Ca2+ to galectin-1-induced exposure of phosphatidylserine on activated neutrophils. J. Biol. Chem. 280(31), 28623–28631 (2005)

    Article  CAS  PubMed  Google Scholar 

  93. Stowell, S.R., Karmakar, S., Stowell, C.J., Dias-Baruffi, M., McEver, R.P., Cummings, R.D.: Human galectin-1, −2, and −4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood. 109(1), 219–227 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, F.T., Hsu, D.K., Zuberi, R.I., Kuwabara, I., Chi, E.Y., Henderson Jr., W.R.: Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol. 147(4), 1016–1028 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Krugluger, W., Frigeri, L.G., Lucas, T., Schmer, M., Forster, O., Liu, F.T., Boltz-Nitulescu, G.: Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription. Immunobiology. 197(1), 97–109 (1997)

    Article  CAS  PubMed  Google Scholar 

  96. Cortegano, I., del Pozo, V., Cardaba, B., de Andres, B., Gallardo, S., del Amo, A., Arrieta, I., Jurado, A., Palomino, P., Liu, F.T., Lahoz, C.: Galectin-3 down-regulates IL-5 gene expression on different cell types. J. Immunol. 161(1), 385–389 (1998)

    CAS  PubMed  Google Scholar 

  97. Cummings, R.D., Liu, F.T., Vasta, G.R.: Galectins. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 469–480. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  98. Elola, M.T., Ferragut, F., Mendez-Huergo, S.P., Croci, D.O., Bracalente, C., Rabinovich, G.A.: Galectins: multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell. Immunol. 333, 34–45 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. Compagno, D., Jaworski, F.M., Gentilini, L., Contrufo, G., Gonzalez Perez, I., Elola, M.T., Pregi, N., Rabinovich, G.A., Laderach, D.J.: Galectins: major signaling modulators inside and outside the cell. Curr. Mol. Med. 14(5), 630–651 (2014)

    Article  CAS  PubMed  Google Scholar 

  100. Stowell, S.R., Arthur, C.M., Dias-Baruffi, M., Rodrigues, L.C., Gourdine, J.P., Heimburg-Molinaro, J., Ju, T., Molinaro, R.J., Rivera-Marrero, C., Xia, B., Smith, D.F., Cummings, R.D.: Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16(3), 295–301 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stowell, S.R., Arthur, C.M., McBride, R., Berger, O., Razi, N., Heimburg-Molinaro, J., Rodrigues, L.C., Gourdine, J.P., Noll, A.J., von Gunten, S., Smith, D.F., Knirel, Y.A., Paulson, J.C., Cummings, R.D.: Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10(6), 470–476 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arthur, C.M., Cummings, R.D., Stowell, S.R.: Evaluation of the bactericidal activity of galectins. Methods Mol. Biol. 1207, 421–430 (2017)

    Article  CAS  Google Scholar 

  103. Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., Randow, F.: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482(7385), 414–418 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim, B.W., Hong, S.B., Kim, J.H., Kwon, D.H., Song, H.K.: Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat. Commun. 4(1613), (2013)

  105. Crovello, C.S., Furie, B.C., Furie, B.: Rapid phosphorylation and selective dephosphorylation of P-selectin accompanies platelet activation. J. Biol. Chem. 268(20), 14590–14593 (1993)

    CAS  PubMed  Google Scholar 

  106. Fujimoto, T., McEver, R.P.: The cytoplasmic domain of P-selectin is phosphorylated on serine and threonine residues. Blood. 82(6), 1758–1766 (1993)

    CAS  PubMed  Google Scholar 

  107. Kaplanski, G., Farnarier, C., Benoliel, A.M., Foa, C., Kaplanski, S., Bongrand, P.: A novel role for E- and P-selectins: shape control of endothelial cell monolayers. J. Cell Sci. 107(Pt 9), 2449–2457 (1994)

    CAS  PubMed  Google Scholar 

  108. Lo, S.K., Lee, S., Ramos, R.A., Lobb, R., Rosa, M., Chi-Rosso, G., Wright, S.D.: Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, mac-1, alpha m beta 2) on human neutrophils. J. Exp. Med. 173(6), 1493–1500 (1991)

    Article  CAS  PubMed  Google Scholar 

  109. Picker, L.J., Warnock, R.A., Burns, A.R., Doerschuk, C.M., Berg, E.L., Butcher, E.C.: The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 66(5), 921–933 (1991)

    Article  CAS  PubMed  Google Scholar 

  110. Damian, R.T.: Molecular mimicry in biological adaptation. Science. 147(3660), 824 (1965)

    Article  CAS  PubMed  Google Scholar 

  111. Damian, R.T.: Molecular mimicry: parasite evasion and host defense. Curr. Top. Microbiol. Immunol. 145, 101–115 (1989)

    CAS  PubMed  Google Scholar 

  112. Nyame, A.K., Debose-Boyd, R., Long, T.D., Tsang, V.C., Cummings, R.D.: Expression of Lex antigen in Schistosoma japonicum and S.haematobium and immune responses to Lex in infected animals: lack of Lex expression in other trematodes and nematodes. Glycobiology. 8(6), 615–624 (1998)

    Article  CAS  PubMed  Google Scholar 

  113. Nyame, A.K., Leppanen, A.M., Bogitsh, B.J., Cummings, R.D.: Antibody responses to the fucosylated LacdiNAc glycan antigen in Schistosoma mansoni-infected mice and expression of the glycan among schistosomes. Exp. Parasitol. 96(4), 202–212 (2000)

    Article  CAS  PubMed  Google Scholar 

  114. Nyame, A.K., Leppanen, A.M., DeBose-Boyd, R., Cummings, R.D.: Mice infected with Schistosoma mansoni generate antibodies to LacdiNAc (GalNAc beta 1-->4GlcNAc) determinants. Glycobiology. 9(10), 1029–1035 (1999)

    Article  CAS  PubMed  Google Scholar 

  115. Nyame, A.K., Pilcher, J.B., Tsang, V.C., Cummings, R.D.: Schistosoma mansoni infection in humans and primates induces cytolytic antibodies to surface Le(x) determinants on myeloid cells. Exp. Parasitol. 82(2), 191–200 (1996)

    Article  CAS  PubMed  Google Scholar 

  116. Nyame, A.K., Pilcher, J.B., Tsang, V.C., Cummings, R.D.: Rodents infected with Schistosoma mansoni produce cytolytic IgG and IgM antibodies to the Lewis x antigen. Glycobiology. 7(2), 207–215 (1997)

    Article  CAS  PubMed  Google Scholar 

  117. Nyame, A.K., Yoshino, T.P., Cummings, R.D.: Differential expression of LacdiNAc, fucosylated LacdiNAc, and Lewis x glycan antigens in intramolluscan stages of Schistosoma mansoni. J. Parasitol. 88(5), 890–897 (2002)

    Article  PubMed  Google Scholar 

  118. Nyame, K., Smith, D.F., Damian, R.T., Cummings, R.D.: Complex-type asparagine-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni adult males contain terminal beta-linked N-acetylgalactosamine. J. Biol. Chem. 264(6), 3235–3243 (1989)

    CAS  PubMed  Google Scholar 

  119. Srivatsan, J., Smith, D.F., Cummings, R.D.: The human blood fluke Schistosoma mansoni synthesizes glycoproteins containing the Lewis X antigen. J. Biol. Chem. 267(28), 20196–20203 (1992)

    CAS  PubMed  Google Scholar 

  120. Srivatsan, J., Smith, D.F., Cummings, R.D.: Schistosoma mansoni synthesizes novel biantennary Asn-linked oligosaccharides containing terminal beta-linked N-acetylgalactosamine. Glycobiology. 2(5), 445–452 (1992)

    Article  CAS  PubMed  Google Scholar 

  121. Richter, D., Incani, R.N., Harn, D.A.: Lacto-N-fucopentaose III (Lewis x), a target of the antibody response in mice vaccinated with irradiated cercariae of Schistosoma mansoni. Infect. Immun. 64(5), 1826–1831 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  122. van Die, I., Gomord, V., Kooyman, F.N., van den Berg, T.K., Cummings, R.D., Vervelde, L.: Core alpha1-->3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett. 463(1–2), 189–193 (1999)

    PubMed  Google Scholar 

  123. Jang-Lee, J., Curwen, R.S., Ashton, P.D., Tissot, B., Mathieson, W., Panico, M., Dell, A., Wilson, R.A., Haslam, S.M.: Glycomics analysis of Schistosoma mansoni egg and cercarial secretions. Mol. Cell. Proteomics. 6(9), 1485–1499 (2007)

    Article  CAS  PubMed  Google Scholar 

  124. Nyame, K., Cummings, R.D., Damian, R.T.: Characterization of the N- and O-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni schistosomula. J. Parasitol. 74(4), 562–572 (1988)

    Article  CAS  PubMed  Google Scholar 

  125. Holt, G.D., Hart, G.W.: The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261(17), 8049–8057 (1986)

    CAS  PubMed  Google Scholar 

  126. Torres, C.R., Hart, G.W.: Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259(5), 3308–3317 (1984)

    CAS  PubMed  Google Scholar 

  127. van Die, I., Cummings, R.D.: Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology. 20(1), 2–12 (2010)

    Article  CAS  PubMed  Google Scholar 

  128. Kawar, Z.S., Van Die, I., Cummings, R.D.: Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. J. Biol. Chem. 277(38), 34924–34932 (2002)

    Article  CAS  PubMed  Google Scholar 

  129. Stanley, P., Sundaram, S., Sallustio, S.: A subclass of cell surface carbohydrates revealed by a CHO mutant with two glycosylation mutations. Glycobiology. 1(3), 307–314 (1991)

    Article  CAS  PubMed  Google Scholar 

  130. Oelmann, S., Stanley, P., Gerardy-Schahn, R.: Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276(28), 26291–26300 (2001)

    Article  CAS  PubMed  Google Scholar 

  131. Kawar, Z.S., Haslam, S.M., Morris, H.R., Dell, A., Cummings, R.D.: Novel poly-GalNAcbeta1-4GlcNAc(LacdiNAc) and fucosylated poly-LacdiNAc N-glycans from mammalian cells expressing beta1,4-N-acetylgalactosaminyltransferase and alpha1,3-fucosyltransferase. J. Biol. Chem. 280(13), 12810–12819 (2005)

    Article  CAS  PubMed  Google Scholar 

  132. Song, X., Lasanajak, Y., Xia, B., Heimburg-Molinaro, J., Rhea, J.M., Ju, H., Zhao, C., Molinaro, R.J., Cummings, R.D., Smith, D.F.: Shotgun glycomics: a microarray strategy for functional glycomics. Nat. Methods. 8(1), 85–90 (2011)

    Article  CAS  PubMed  Google Scholar 

  133. Byrd-Leotis, L., Jia, N., Dutta, S., Trost, J.F., Gao, C., Cummings, S.F., Braulke, T., Muller-Loennies, S., Heimburg-Molinaro, J., Steinhauer, D.A., Cummings, R.D.: Influenza binds phosphorylated glycans from human lung. Sci. Adv. 5(2), eaav2554 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mickum, M.L., Prasanphanich, N.S., Song, X., Dorabawila, N., Mandalasi, M., Lasanajak, Y., Luyai, A., Secor, W.E., Wilkins, P.P., Van Die, I., Smith, D.F., Nyame, A.K., Cummings, R.D., Rivera-Marrero, C.A.: Identification of antigenic Glycans from Schistosoma mansoni by using a shotgun egg glycan microarray. Infect. Immun. 84(5), 1371–1386 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Prasanphanich, N.S., Luyai, A.E., Song, X., Heimburg-Molinaro, J., Mandalasi, M., Mickum, M., Smith, D.F., Nyame, A.K., Cummings, R.D.: Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite. Glycobiology. 24(7), 619–637 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. de Boer, A.R., Hokke, C.H., Deelder, A.M., Wuhrer, M.: Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj. J. 25(1), 75–84 (2008)

    Article  CAS  PubMed  Google Scholar 

  137. van Diepen, A., Smit, C.H., van Egmond, L., Kabatereine, N.B., Pinot de Moira, A., Dunne, D.W., Hokke, C.H.: Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray. PLoS Negl. Trop. Dis. 6(11), e1922 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. de Boer, A.R., Hokke, C.H., Deelder, A.M., Wuhrer, M.: General microarray technique for immobilization and screening of natural glycans. Anal. Chem. 79(21), 8107–8113 (2007)

    Article  CAS  PubMed  Google Scholar 

  139. Jankowska, E., Parsons, L.M., Song, X., Smith, D.F., Cummings, R.D., Cipollo, J.F.: A comprehensive Caenorhabditis elegans N-glycan shotgun array. Glycobiology. 28(4), 223–232 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Klaver, E.J., Kuijk, L.M., Lindhorst, T.K., Cummings, R.D., van Die, I.: Schistosoma mansoni soluble egg antigens induce expression of the negative regulators SOCS1 and SHP1 in human dendritic cells via interaction with the mannose receptor. PLoS One. 10(4), e0124089 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Klaver, E.J., van der Pouw Kraan, T.C., Laan, L.C., Kringel, H., Cummings, R.D., Bouma, G., Kraal, G., van Die, I.: Trichuris suis soluble products induce Rab7b expression and limit TLR4 responses in human dendritic cells. Genes Immun. 16(6), 378–387 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Die, I., van Vliet, S.J., Nyame, A.K., Cummings, R.D., Bank, C.M., Appelmelk, B., Geijtenbeek, T.B., van Kooyk, Y.: The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology. 13(6), 471–478 (2003)

    Article  CAS  PubMed  Google Scholar 

  143. van Liempt, E., Bank, C.M., Mehta, P., Garcia-Vallejo, J.J., Kawar, Z.S., Geyer, R., Alvarez, R.A., Cummings, R.D., Kooyk, Y., van Die, I.: Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Lett. 580(26), 6123–6131 (2006)

    Article  CAS  PubMed  Google Scholar 

  144. van Die, I., Cummings, R.D.: The mannose receptor in regulation of helminth-mediated host immunity. Front. Immunol. 8(1677), (2017)

  145. Nyame, K., Cummings, R.D., Damian, R.T.: Characterization of the high mannose asparagine-linked oligosaccharides synthesized by Schistosoma mansoni adult male worms. Mol. Biochem. Parasitol. 28(3), 265–274 (1988)

    Article  CAS  PubMed  Google Scholar 

  146. O'Neill, S.M., Brady, M.T., Callanan, J.J., Mulcahy, G., Joyce, P., Mills, K.H., Dalton, J.P.: Fasciola hepatica infection downregulates Th1 responses in mice. Parasite Immunol. 22(3), 147–155 (2000)

    Article  CAS  PubMed  Google Scholar 

  147. Dalton, J.P., Robinson, M.W., Mulcahy, G., O'Neill, S.M., Donnelly, S.: Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet. Parasitol. 195(3–4), 272–285 (2013)

    Article  CAS  PubMed  Google Scholar 

  148. Harn, D.A., McDonald, J., Atochina, O., Da'dara, A.A.: Modulation of host immune responses by helminth glycans. Immunol. Rev. 230(1), 247–257 (2009)

    Article  CAS  PubMed  Google Scholar 

  149. Spiro, R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 12(4), 43R–56R (2002)

    Article  CAS  PubMed  Google Scholar 

  150. Steentoft, C., Vakhrushev, S.Y., Joshi, H.J., Kong, Y., Vester-Christensen, M.B., Schjoldager, K.T., Lavrsen, K., Dabelsteen, S., Pedersen, N.B., Marcos-Silva, L., Gupta, R., Bennett, E.P., Mandel, U., Brunak, S., Wandall, H.H., Levery, S.B., Clausen, H.: Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32(10), 1478–1488 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Brockhausen, I., Stanley, P.: O-GalNAc Glycans. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 113–123. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)

    Google Scholar 

  152. Halim, A., Brinkmalm, G., Ruetschi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., Blennow, K., Larson, G., Nilsson, J.: Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloidbeta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. U. S. A. 108(29), 11848–11853 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  153. Vakhrushev, S.Y., Steentoft, C., Vester-Christensen, M.B., Bennett, E.P., Clausen, H., Levery, S.B.: Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells. Mol. Cell. Proteomics. 12(4), 932–944 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gibadullin, R., Farnsworth, D.W., Barchi Jr., J.J., Gildersleeve, J.C.: GalNAc-tyrosine is a ligand of plant lectins, antibodies, and human and murine macrophage galactose-type lectins. ACS Chem. Biol. 12(8), 2172–2182 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., Tabak, L.A.: Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22(6), 736–756 (2012)

    Article  CAS  PubMed  Google Scholar 

  156. Ju, T., Otto, V.I., Cummings, R.D.: The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. Eng. 50(8), 1770–1791 (2011)

    Article  CAS  Google Scholar 

  157. Kudelka, M.R., Antonopoulos, A., Wang, Y., Duong, D.M., Song, X., Seyfried, N.T., Dell, A., Haslam, S.M., Cummings, R.D., Ju, T.: Cellular O-Glycomereporter/amplification to explore O-glycans of living cells. Nat. Methods. 13(1), 81–86 (2016)

    Article  CAS  PubMed  Google Scholar 

  158. Kudelka, M.R., Nairn, A.V., Sardar, M.Y., Sun, X., Chaikof, E.L., Ju, T., Moremen, K.W., Cummings, R.D.: Isotopic labeling with cellular O-glycomereporter/amplification(ICORA) for comparative O-glycomics of cultured cells. Glycobiology. 28(4), 214–222 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ju, T., Cummings, R.D.: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl. Acad. Sci. U. S. A. 99(26), 16613–16618 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ju, T., Aryal, R.P., Stowell, C.J., Cummings, R.D.: Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J. Cell Biol. 182(3), 531–542 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sun, Q., Ju, T., Cummings, R.D.: The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum. J. Biol. Chem. 286(13), 11529–11542 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Narimatsu, Y., Kubota, T., Furukawa, S., Shimojima, M., Iwasaki, H., Tozawa, Y., Tachibana, K., Narimatsu, H.: Co-translational function of Cosmc, core 1 synthase specific molecular chaperone, revealed by a cell-free translation system. FEBS Lett. 585(9), 1276–1280 (2011)

    Article  CAS  PubMed  Google Scholar 

  163. Aryal, R.P., Ju, T., Cummings, R.D.: The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J. Biol. Chem. 285(4), 2456–2462 (2010)

    Article  CAS  PubMed  Google Scholar 

  164. Aryal, R.P., Ju, T., Cummings, R.D.: Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J. Biol. Chem. 287(19), 15317–15329 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Aryal, R.P., Ju, T., Cummings, R.D.: Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J. Biol. Chem. 289(17), 11630–11641 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dausset, J., Moullec, J., Bernard, J.: Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (anti-Tn). Blood. 14, 1079–1093 (1959)

    CAS  PubMed  Google Scholar 

  167. Vainchenker, W., Vinci, G., Testa, U., Henri, A., Tabilio, A., Fache, M.P., Rochant, H., Cartron, J.P.: Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J. Clin. Invest. 75(2), 541–546 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thurnher, M., Clausen, H., Fierz, W., Lanzavecchia, A., Berger, E.G.: T cell clones with normal or defective O-galactosylation from a patient with permanent mixed-field polyagglutinability. Eur. J. Immunol. 22(7), 1835–1842 (1992)

    Article  CAS  PubMed  Google Scholar 

  169. Ju, T., Cummings, R.D.: Protein glycosylation: chaperone mutation in Tn syndrome. Nature. 437(7063), 1252 (2005)

    Article  CAS  PubMed  Google Scholar 

  170. Crew, V.K., Singleton, B.K., Green, C., Parsons, S.F., Daniels, G., Anstee, D.J.: New mutations in C1GALT1C1 in individuals with Tn positive phenotype. Br. J. Haematol. 142(4), 657–667 (2008)

    Article  CAS  PubMed  Google Scholar 

  171. Yu, X., Du, Z., Sun, X., Shi, C., Zhang, H., Hu, T.: Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29. Int. J. Clin. Exp. Pathol. 8(3), 2590–2602 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sun, X., Ju, T., Cummings, R.D.: Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer. 18(1), 827 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, Y., Ju, T., Ding, X., Xia, B., Wang, W., Xia, L., He, M., Cummings, R.D.: Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9228–9233 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wang, Y., Jobe, S.M., Ding, X., Choo, H., Archer, D.R., Mi, R., Ju, T., Cummings, R.D.: Platelet biogenesis and functions require correct protein O-glycosylation. Proc. Natl. Acad. Sci. U. S. A. 109(40), 16143–16148 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  175. Xia, L., McEver, R.P.: Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase(T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol. 416, 314–331 (2006)

    Article  CAS  PubMed  Google Scholar 

  176. Yago, T., Fu, J., McDaniel, J.M., Miner, J.J., McEver, R.P., Xia, L.: Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9204–9209 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  177. Fu, J., Gerhardt, H., McDaniel, J.M., Xia, B., Liu, X., Ivanciu, L., Ny, A., Hermans, K., Silasi-Mansat, R., McGee, S., Nye, E., Ju, T., Ramirez, M.I., Carmeliet, P., Cummings, R.D., Lupu, F., Xia, L.: Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J. Clin. Invest. 118(11), 3725–3737 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jacobs, J.P., Lin, L., Goudarzi, M., Ruegger, P., McGovern, D.P., Fornace Jr., A.J., Borneman, J., Xia, L., Braun, J.: Microbial, metabolomic, and immunologic dynamics in a relapsing genetic mouse model of colitis induced by T-synthase deficiency. Gut Microbes. 8(1), 1–16 (2017)

    Article  CAS  PubMed  Google Scholar 

  179. Song, K., Fu, J., Song, J., Herzog, B.H., Bergstrom, K., Kondo, Y., McDaniel, J.M., McGee, S., Silasi-Mansat, R., Lupu, F., Chen, H., Bagavant, H., Xia, L.: Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J. Biol. Chem. 292(40), 16491–16497 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nakazawa, S., Imamura, R., Kawamura, M., Kato, T., Abe, T., Iwatani, H., Yamanaka, K., Uemura, M., Kishikawa, H., Nishimura, K., Tajiri, M., Wada, Y., Nonomura, N.: Evaluation of IgA1 O-glycosylation in Henoch-Schonlein Purpura nephritis using mass spectrometry. Transplant. Proc. 51(5), 1481–1487 (2019)

    Article  CAS  PubMed  Google Scholar 

  181. Qin, W., Zhou, Q., Yang, L.C., Li, Z., Su, B.H., Luo, H., Fan, J.M.: Peripheral B lymphocyte beta1,3-galactosyltransferase and chaperone expression in immunoglobulin a nephropathy. J. Intern. Med. 258(5), 467–477 (2005)

    Article  CAS  PubMed  Google Scholar 

  182. Kiryluk, K., Li, Y., Moldoveanu, Z., Suzuki, H., Reily, C., Hou, P., Xie, J., Mladkova, N., Prakash, S., Fischman, C., Shapiro, S., LeDesma, R.A., Bradbury, D., Ionita-Laza, I., Eitner, F., Rauen, T., Maillard, N., Berthoux, F., Floege, J., Chen, N., Zhang, H., Scolari, F., Wyatt, R.J., Julian, B.A., Gharavi, A.G., Novak, J.: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13(2), e1006609 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chang, D., Gao, F., Slavney, A., Ma, L., Waldman, Y.Y., Sams, A.J., Billing-Ross, P., Madar, A., Spritz, R., Keinan, A.: Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS One. 9(12), e113684 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Steentoft, C., Bennett, E.P., Clausen, H.: Glycoengineering of human cell lines using zinc finger nuclease gene targeting: SimpleCells with homogeneous GalNAc O-glycosylation allow isolation of the O-glycoproteome by one-step lectin affinity chromatography. Methods Mol. Biol. 1022, 387–402 (2013)

    Article  CAS  PubMed  Google Scholar 

  185. Hakomori, S.: Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res. 52, 257–331 (1989)

    Article  CAS  PubMed  Google Scholar 

  186. Ju, T., Aryal, R.P., Kudelka, M.R., Wang, Y., Cummings, R.D.: The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14(1), 63–81 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kudelka, M.R., Ju, T., Heimburg-Molinaro, J., Cummings, R.D.: Simple sugars to complex disease--mucin-typeO-glycans in cancer. Adv. Cancer Res. 126, 53–135 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mi, R., Song, L., Wang, Y., Ding, X., Zeng, J., Lehoux, S., Aryal, R.P., Wang, J., Crew, V.K., van Die, I., Chapman, A.B., Cummings, R.D., Ju, T.: Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing tn antigen. J. Biol. Chem. 287(49), 41523–41533 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hofmann, B.T., Schluter, L., Lange, P., Mercanoglu, B., Ewald, F., Folster, A., Picksak, A.S., Harder, S., El Gammal, A.T., Grupp, K., Gungor, C., Drenckhan, A., Schluter, H., Wagener, C., Izbicki, J.R., Jucker, M., Bockhorn, M., Wolters-Eisfeld, G.: COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol. Cancer. 14(109), (2015)

  190. Radhakrishnan, P., Dabelsteen, S., Madsen, F.B., Francavilla, C., Kopp, K.L., Steentoft, C., Vakhrushev, S.Y., Olsen, J.V., Hansen, L., Bennett, E.P., Woetmann, A., Yin, G., Chen, L., Song, H., Bak, M., Hlady, R.A., Peters, S.L., Opavsky, R., Thode, C., Qvortrup, K., Schjoldager, K.T., Clausen, H., Hollingsworth, M.A., Wandall, H.H.: Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl. Acad. Sci. U. S. A. 111(39), E4066–E4075 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chugh, S., Barkeer, S., Rachagani, S., Nimmakayala, R.K., Perumal, N., Pothuraju, R., Atri, P., Mahapatra, S., Thapa, I., Talmon, G.A., Smith, L.M., Yu, X., Neelamegham, S., Fu, J., Xia, L., Ponnusamy, M.P., Batra, S.K.: Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in mice. Gastroenterology. 155(5), 1608–1624 (2018)

    Article  CAS  PubMed  Google Scholar 

  192. Gao, N., Bergstrom, K., Fu, J., Xie, B., Chen, W., Xia, L.: Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am. J. Physiol. Gastrointest. Liver Physiol. 311(1), G74–G83 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kudelka, M.R., Hinrichs, B.H., Darby, T., Moreno, C.S., Nishio, H., Cutler, C.E., Wang, J., Wu, H., Zeng, J., Wang, Y., Ju, T., Stowell, S.R., Nusrat, A., Jones, R.M., Neish, A.S., Cummings, R.D.: Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc. Natl. Acad. Sci. U. S. A. 113(51), 14787–14792 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cummings, R.D., Kornfeld, S., Schneider, W.J., Hobgood, K.K., Tolleshaug, H., Brown, M.S., Goldstein, J.L.: Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 258(24), 15261–15273 (1983)

    CAS  PubMed  Google Scholar 

  195. Kingsley, D.M., Kozarsky, K.F., Hobbie, L., Krieger, M.: Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-gal/UDP-GalNAc 4-epimerase deficient mutant. Cell. 44(5), 749–759 (1986)

    Article  CAS  PubMed  Google Scholar 

  196. Wang, S., Mao, Y., Narimatsu, Y., Ye, Z., Tian, W., Goth, C.K., Lira-Navarrete, E., Pedersen, N.B., Benito-Vicente, A., Martin, C., Uribe, K.B., Hurtado-Guerrero, R., Christoffersen, C., Seidah, N.G., Nielsen, R., Christensen, E.I., Hansen, L., Bennett, E.P., Vakhrushev, S.Y., Schjoldager, K.T., Clausen, H.: Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J. Biol. Chem. 293(19), 7408–7422 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cummings, R.D.: The repertoire of glycan determinants in the human glycome. Mol. BioSyst. 5(10), 1087–1104 (2009)

    Article  CAS  PubMed  Google Scholar 

  198. Schneider, C., Smith, D.F., Cummings, R.D., Boligan, K.F., Hamilton, R.G., Bochner, B.S., Miescher, S., Simon, H.U., Pashov, A., Vassilev, T., von Gunten, S.: The human IgG anti-carbohydrate repertoire exhibits a universal architecture and contains specificity for microbial attachment sites. Sci. Transl. Med. 7(269), 269ra261 (2015)

    Article  CAS  Google Scholar 

  199. von Gunten, S., Smith, D.F., Cummings, R.D., Riedel, S., Miescher, S., Schaub, A., Hamilton, R.G., Bochner, B.S.: Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J. Allergy Clin. Immunol. 123(6), 1268–1276 e1215 (2009)

    Article  CAS  Google Scholar 

  200. Lu, L.L., Smith, M.T., Yu, K.K.Q., Luedemann, C., Suscovich, T.J., Grace, P.S., Cain, A., Yu, W.H., McKitrick, T.R., Lauffenburger, D., Cummings, R.D., Mayanja-Kizza, H., Hawn, T.R., Boom, W.H., Stein, C.M., Fortune, S.M., Seshadri, C., Alter, G.: IFN-gamma-independent immune markers of mycobacterium tuberculosis exposure. Nat. Med. 25(6), 977–987 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, D., Liu, S., Trummer, B.J., Deng, C., Wang, A.: Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20(3), 275–281 (2002)

    Article  CAS  PubMed  Google Scholar 

  202. Feizi, T., Fazio, F., Chai, W., Wong, C.H.: Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13(5), 637–645 (2003)

    Article  CAS  PubMed  Google Scholar 

  203. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D.J., Skehel, J.J., van Die, I., Burton, D.R., Wilson, I.A., Cummings, R., Bovin, N., Wong, C.H., Paulson, J.C.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101(49), 17033–17038 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Boonyarattanakalin, S., Liu, X., Michieletti, M., Lepenies, B., Seeberger, P.H.: Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from mycobacterium tuberculosis. J. Am. Chem. Soc. 130(49), 16791–16799 (2008)

    Article  CAS  PubMed  Google Scholar 

  205. Hirabayashi, J.: Oligosaccharide microarrays for glycomics. Trends Biotechnol. 21(4), 141–143; discussion 143 (2003)

    Article  CAS  PubMed  Google Scholar 

  206. Alvarez, R.A., Blixt, O.: Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol. 415, 292–310 (2006)

    Article  CAS  PubMed  Google Scholar 

  207. Song, X., Heimburg-Molinaro, J., Smith, D.F., Cummings, R.D.: Derivatization of free natural glycans for incorporation onto glycan arrays: derivatizing glycans on the microscale for microarray and other applications (ms# CP-10-0194). Curr Protoc Chem Biol. 3(2), 53–63 (2011)

    PubMed  PubMed Central  Google Scholar 

  208. Smith, D.F., Cummings, R.D., Song, X.: History and future of shotgun glycomics. Biochem. Soc. Trans. 47(1), 1–11 (2019)

    Article  CAS  PubMed  Google Scholar 

  209. Xia, B., Kawar, Z.S., Ju, T., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods. 2(11), 845–850 (2005)

    Article  CAS  PubMed  Google Scholar 

  210. Song, X., Xia, B., Stowell, S.R., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16(1), 36–47 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yu, Y., Lasanajak, Y., Song, X., Hu, L., Ramani, S., Mickum, M.L., Ashline, D.J., Prasad, B.V., Estes, M.K., Reinhold, V.N., Cummings, R.D., Smith, D.F.: Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell. Proteomics. 13(11), 2944–2960 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yu, Y., Mishra, S., Song, X., Lasanajak, Y., Bradley, K.C., Tappert, M.M., Air, G.M., Steinhauer, D.A., Halder, S., Cotmore, S., Tattersall, P., Agbandje-McKenna, M., Cummings, R.D., Smith, D.F.: Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 287(53), 44784–44799 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Byrd-Leotis, L., Liu, R., Bradley, K.C., Lasanajak, Y., Cummings, S.F., Song, X., Heimburg-Molinaro, J., Galloway, S.E., Culhane, M.R., Smith, D.F., Steinhauer, D.A., Cummings, R.D.: Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc. Natl. Acad. Sci. U. S. A. 111(22), E2241–E2250 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hu, L., Ramani, S., Czako, R., Sankaran, B., Yu, Y., Smith, D.F., Cummings, R.D., Estes, M.K., Venkataram Prasad, B.V.: Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nat. Commun. 6(8346), (2015)

  215. Byrd-Leotis, L., Cummings, R.D., Steinhauer, D.A.: The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int. J. Mol. Sci. 18(7), (2017)

  216. Byrd-Leotis, L., Jia, N., Dutta, S., Trost, J., Gao, C., Cummings, S., Braulke, T., Müller-Loennies, S., Heimburg-Molinaro, J., Steinhauer, D., Cummings, R.: Influenza binds phosphorylated Glycans from human lung. Sci. Adv. 5(2), eaav2554 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  217. Gulati, S., Lasanajak, Y., Smith, D.F., Cummings, R.D., Air, G.M.: Glycan array analysis of influenza H1N1 binding and release. Cancer Biomark. 14(1), 43–53 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gulati, S., Smith, D.F., Cummings, R.D., Couch, R.B., Griesemer, S.B., St George, K., Webster, R.G., Air, G.M.: Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. PLoS One. 8(6), e66325 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Heimburg-Molinaro, J., Tappert, M., Song, X., Lasanajak, Y., Air, G., Smith, D.F., Cummings, R.D.: Probing virus-glycan interactions using glycan microarrays. Methods Mol. Biol. 808, 251–267 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Song, X., Yu, H., Chen, X., Lasanajak, Y., Tappert, M.M., Air, G.M., Tiwari, V.K., Cao, H., Chokhawala, H.A., Zheng, H., Cummings, R.D., Smith, D.F.: A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J. Biol. Chem. 286(36), 31610–31622 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Jamie Heimburg-Molinaro and Sandra Cummings for thoughtful reading and editing of this manuscript. The work of the author over the years has been supported by various funding agencies, including most recently NIH Grants R01AG062181, P41GM103694, and R01AI101982 to RDC, Gates Foundation OPP1152154, OPP1151840 to RDC, and support to RDC by the U.S. Department of Health and Human Services contract HHSN272201400004C (NIAID Centers of Excellence for Influenza Research and Surveillance).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Cummings.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cummings, R.D. “Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling”. Glycoconj J 36, 241–257 (2019). https://doi.org/10.1007/s10719-019-09876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09876-0

Keywords

Navigation