Skip to main content
Log in

Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3ʹ/6ʹsulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA/CP:

Acrylyamide copolymer

AAL:

Aleuria aurantia lectin

Al:

Allyl

Bn:

Benzyl

BGA:

Blood group antigen

BSA:

Bovine serum albumin

BSM:

Bovine submaxillary mucin

CGM:

Cowper’s gland mucin

CMP:

Cytidine 5′ monophosphate

FOG:

Fetuin O-glycosidic

FTA:

Fetuin triantennary

GP:

Glycopeptide

LacNAc:

Galβ1, 4GlcNAc

Me:

Methyl

Mucin Core 2:

Galβ1-3(GlcNAcβ1-6)GalNAcα-o-Ser/Thr

PGM:

Pig gastric mucin

PNA:

Peanut agglutinin

RCA-I:

Ricinus communis agglutinin-I

SNA-I:

Sambucus nigra agglutinin-I

ST:

Sialyltransferase

T-hapten:

Galβ1-3GalNAcα-O-Ser/Thr

Tn-hapten:

GalNAcα-O-Ser/Thr

WGA:

Wheat germ agglutinin

References

  1. Sharon N., Lis H.: Legume lectins- a large family of homologous proteins. FASEB J. 4, 3198–3208 (1990)

    CAS  PubMed  Google Scholar 

  2. Gershoni J.: Protein blotting: a manual. Methods Biochem. Anal. 33, 1–58 (1988)

    Article  CAS  PubMed  Google Scholar 

  3. Spiier S.S., Schulte B.A.: Diversity of cell glycoconjugates shown histochemically: a perspective. J. Histochem. Cytochem. 40, 1–38 (1992)

    Article  Google Scholar 

  4. Kilpatrick D.C., Green C.: Lectins as blood typing reagents. Adv. Lectin Res. 5, 51–94 (1992)

    CAS  Google Scholar 

  5. Osawa T., Tsuji T.: Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Ann. Rev. Biochem. 56, 21–42 (1987)

    Article  CAS  PubMed  Google Scholar 

  6. Debray H., Montreuil J.: Lectin affinity chromatography of glycoconjugates. Adv. Lectin Res. 4, 51–96 (1991)

    Article  CAS  Google Scholar 

  7. Sato S., Animashaun T., Hughes R.C.: Carbohydrate-binding specificity of Tetracarpidium conophorum lectin. J. Biol. Chem. 266, 11485–11404 (1991)

    CAS  PubMed  Google Scholar 

  8. Yamashita K., Totani K., Ohkura T., Takasaki S., Goldstein I.J., Kobats A.: Carbohydrate binding properties of complex-type oligosaccharides on Datura stramonium lectin. J. Biol. Chem. 262, 1602–1607 (1987)

    CAS  PubMed  Google Scholar 

  9. Green E.D., Baenziger J.U.: Oligosaccharide specificity of Phaseolus vulgaris leukoagglutinating and erythroagglutinating phytohemagglutinins interactions with N-glycanase-released oligosaccharides. J. Biol. Chem. 262, 12018–12029 (1987)

    CAS  PubMed  Google Scholar 

  10. Merkle R.K., Cummings R.D.: Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138, 232–259 (1987)

    Article  CAS  PubMed  Google Scholar 

  11. Léger D., Campion B., Decottignies J.-P., Montreuil J., Spik G.: Physiological significance of the marked increased branching of the glycans of human serotransferrin during pregnancy. Biochem. J. 257, 231–238 (1989)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharma V., Surolia A.: Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J. Mol. Biol. 267, 433–445 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Sharma V., Srinivas V.R., Adhikari P., Vijayan M.: And Surolia a: molecular basis of recognition by Gal/GalNAc specific legume lectins: influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. Glycobiology. 8, 1007–1012 (1998)

  14. Yim M., Ono T., Irmura T.: Mutated plant lectin library useful to identify different cells. Proc. Natl. Acad. Sci. U. S. A. 98, 2222–2225 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varki A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3, 97–130 (1993)

    Article  CAS  PubMed  Google Scholar 

  16. Pocheć E , Lityńska A , Amoresano A and Casbarra A: Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochim. Biophys. Acta, 1643: 113–123 (2003).

    Article  PubMed  Google Scholar 

  17. Cummings, R.D. Plant lectins. In: Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth, J. (eds.) Essentials of glycobiology. Cold Spring Harbor, pp. 455–467. Cold Spring Harbor Laboratory Press, N.Y. (1999)

  18. Yue T., Brian B., Haab B.B.: Microarrays in glycoproteomics research. Clin. Lab. Med. 29, 15–29 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Porter A, Yue T, Heeringa L, Day S, Suh E, and Haab, B. B: A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins. Glycobiology, 20: 369–380 (2010).

  20. Hirabayashi J.: Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J. 21, 35–40 (2004)

    Article  PubMed  Google Scholar 

  21. Pilobello K.T., Krishnamoorthy L., Slawek D., Mahal L.K.: : development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem. 6, 985–989 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Manimala J.C., Roach T.A., Li Z., Gildersleeve J.C.: High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. Int. Ed. 45, 3607–3610 (2006)

    Article  CAS  Google Scholar 

  23. Angeloni S., Ridet J.L., Kusy N., Gao H., Crevoisier F., Guinchard S., Kochhar S., Sigrist H., Sprenger N.: Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology. 15, 31–41 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Etxebarria J., Calvo J.: Martin-Lomas M and ReichardtN-C: lectin-array blotting: profiling protein glycosylation in complex mixtures. ACS Chem. Biol. 7, 1729–1737 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Li C., Simeone D.M., Brenner D.E., Anderson M.A., Shedden K.A., Ruffin M.T., Lubman D.M.: Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J. Proteome Res. 8, 483–492 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bird-Lieberman E.L., Neves A.A., Lao-Sirieix P., O’Donovan M., Novelli M., Lovat L.B., Eng W.S., Mahal L.K., Brindle K.M., Fitzgerald R.C.: Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Med. 18, 315–332 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Chandrasekaran E.V., Xue J., Xia J., Chawda R., Piskorz C., Locke R.D., Neelamegham S., Matta K.L.: Analysis of the Specificity of Sialytransferases toward Mucin Core 2, Globo, and Related Structures. Identification of the Sialylation Sequence and the Effects of Sulfate, Fucose, Methyl, and Fluoro Substiuents of the Carbohydrate Chain in the Biosynthesis of Selectin and Siglec Ligands, and Novel Sialylation by Cloned 2, 3(O) Sialyltransferase. Biochemistry. 44, 15619–15635 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Jain, R. K, Piskorz, C. F, Chandrasekaran E.V. , Matta, K. L: Synthesis of gal-β1-(1 → 4)-GlcNAc-β-(1 → 6)-[gal-β-(1 → 3)]-GalNAc-α-Obn oligosaccharides bearing O-methyl or O-sulfo groups at C-3 of the gal residue: specific acceptors for gal: 3-O-sulfotransferases. Glycoconj. J., 15:951–959(1998).

  29. Jain R.K., Piskorz C.F., Huang B.G., Locke R.D., Han H.L., Koenig A., Varki A., Matta K.L.: Inhibition of L- and P-selectin by a rationally synthesized novel Core 2-like branched structure containing GalNAc-Lewisx and Neu5Acα2–3Galβ1–3GalNAc sequences. Glycobiology. 8, 707–717 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Xia J., Alderfer J.L., Srikrishnan T., Chandrasekaran E.V., Matta K.: L: a convergent synthesis of core-2 branched sialylated and sulfated oligosaccharides. Bioorg. Med. Chem. 10, 3673–3684 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Xia J., Alderfer J.L., Piskorz C.F., Locke R.D., Matta K.L.: Synthesis of fluorine-containing core-2 tetrasaccharides. Synlett. 9, 1291–1294 (2003)

    Google Scholar 

  32. Xue, J ; Kumar, V ; Khaja, S. D.; Chandrasekaran, E.V. ; Locke, R. D. ; Matta, K. L: Syntheses of fluorine-containing mucin core 2/core 6 structures using novel fluorinated glucosaminyl donors. Tetrahedron, 65: 8325–8335 (2009).

    Article  CAS  Google Scholar 

  33. Chandrasekaran E.V., Jain R.K., Larsen R.D., Wlasichuk K., Matta K.L.: Selectin-ligands and tumor associated carbohydrate structures: specificities of α2,3-sialyltransferases in the assembly of 3′-sialyl, 6-sulfo/sialyl Lewis a and x, 3′-sialyl, 6′-sulfo Lewis x and 3′-sialyl, 6-sialyl/sulfo blood group T-hapten. Biochemistry. 34, 2925–2936 (1995)

    Article  CAS  PubMed  Google Scholar 

  34. Chandrasekaran E.V., Jain R.K., Vig R., Matta K.L.: The enzymatic sulfation of glycoprotein carbohydrate units: blood group T-hapten specific and two other distinct gal:3-O-sulfotransferases as evident from specificities and kinetics and the influence of sulfate and fucose residues occurring in the carbohydrate chain and on C-3 sulfation of terminal gal. Glycobiology. 7, 753–768 (1997)

    Article  CAS  PubMed  Google Scholar 

  35. Chandrasekaran E.V., Xue J., Xia J., Locke R.D., Matta K.L., Neelamegham S.: Reversible sialylation: Synthesis of cytidine 5′-monophospho-N-acetylneuraminic acid from cytidine 5′-monophosphate with 2, 3-sialyl o-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products. Biochemistry. 47, 320–330 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. Van Damme E.J.M., Barre A., Rouge P., Leuven F., Peumans W.J.: The NeuAc(alpha-2,6)Gal/GalNAc-binding lectin from elderberry (Sambucus Nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure. Eur. J. Biochem. 235, 128–137 (1996)

    Article  PubMed  Google Scholar 

  37. Xue J., Song L., Khaja D.S., Locke D.R., West C.M., Laine R.A., Matta K.L.: Determination of linkage position and anomeric configuration in hex-fuc disaccharides using electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1947–1955 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Chandrasekaran E.V., Chawda R., Locke R.D., Piskorz C.F., Matta K.L.: Biosynthesis of the carbohydrate antigenic determinants, Globo H, blood group H, and Lewis b: a role for prostate cancer cell alpha1,2-L-fucosyltransferase. Glycobiology. 12, 153–162 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Chandrasekaran E.V., Jain R.K., Larsen R.D., Wlasichuk K., DiCioccio R.A., Matta K.L.: Specificity analysis of three clonal and five non-clonal R1,3-L-fucosyltransferases with sulfated, sialylated, or fucosylated synthetic carbohydrates as acceptors in relation to the assembly of 3′-sialyl-6′-sulfo Lewis x (the L-selectin ligand) and related complex structures. Biochemistry. 35, 8925–8933 (1996)

    Article  CAS  PubMed  Google Scholar 

  40. Chandrasekaran E.V., Chawda R., Rhodes J.M., Xia J., Piskorz C., Matta K. L.: Human lung adenocarcinoma α1,3/4-L-fucosyltransferase displays two molecular forms, high substrate affinity for clustered sialyl LacNAc type 1 units as well as mucin core 2 sialyl LacNAc type 2 unit and novel α1,2-L-fucosylating activity. Glycobiology. 11, 353–363 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Chandrasekaran E.V., Xue J., Neelamegham S., Matta K.L.: The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohydr. Res. 341, 983–994 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Chandrasekaran E.V., Jain R.K., Larsen R.D., Wlasichuk K., Matta K. L.: Characterization of the specificities of human blood group H gene-specified α1, 2-l-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between α1, 2-l-fucosylation of gal and α1, 6-l-fucosylation of asparagine-linked GlcNAc. Biochemistry. 35, 8914–8924 (1996)

    Article  CAS  PubMed  Google Scholar 

  43. Chandrasekaran E.V., Chawda R., Rhodes J.M., Locke R.D., Piskorz C.F., Matta K.L.: The binding characteristics and utilization of Aleuria aurantia. Lens culinaris and few other lectins in the elucidation of fucosyltransferase activities resembling cloned FT VI and apparently unique to colon cancer cells. Carbohydr Res. 338, 887–901 (2003)

    CAS  PubMed  Google Scholar 

  44. Lotan R., Skutelsky E., Danon D., Sharon N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975)

    CAS  PubMed  Google Scholar 

  45. Chen Y., Jain R.K., Chandrasekharan E.V., Matta K.L.: Use of sialylated or sulfated derivatives and acrylamide copolymers of Galbeta 1, 3Ga1NAc alpha- and GaINAc alpha- to determine the specificities of blood group T- and Tn—specific lectins and the copolymers to measure anit-T and anti-Tn antibody levels in cancer patients. Glycoconjucate J. 12, 55–62 (1995)

    Article  Google Scholar 

  46. Chacko B.K., Appukuttan P.S.: Peanut (Arachis hypogaea) lectin recognizes α-linked galactose, but not N-acetyl lactosamine in N-linked oligosaccharide terminals. Intl. J. Biol. Macromol. 28, 365–371 (2001)

    Article  CAS  Google Scholar 

  47. Iskratsch T., Braun A., Paschinger K., Wilson I.B.H.: Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal. Biochem. 386, 133–146 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Cholleti S.R., Agravat S., Morris T., Saltz J.H., Song X., Cummings R.D., Smith D.F.: Automated motif discovery from glycan array data. OMICS: A Journal of Integrative Biology. 16, 10 (2012)

    Google Scholar 

  49. Sharma V., Vijayan M., Surolia A.: Imparting exquisite specificity to peanut agglutinin for the tumor-associated Thomsen-Friedenreich antigen by redesign of its combining site. J. Biol. Chem. 271, 21209–21213 (1996)

    Article  CAS  PubMed  Google Scholar 

  50. Debray H., Decout D., Strecker G., Spik G., Montreuil J.: Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem. 117, 41–55 (1981)

    Article  CAS  PubMed  Google Scholar 

  51. Baenziger J.U., Fiete D.: Structural determinants of Ricinus Communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254, 9795–9799 (1979)

    CAS  PubMed  Google Scholar 

  52. Surolia A., Ahmad A., Bachhawat B. K.: Affinity chromatography of galactose containing biopolymers using covalently coupled Ricinus Communis lectin to Sepharose 4B. Biochim. Biophys. Acta. 404, 83–92 (1975)

    Article  CAS  PubMed  Google Scholar 

  53. Green E.D., Brodbeck R.M., Baenziger J.U.: Lectin affinity high-performance liquid chromatography: interactions of N-glycanase-released oligosaccharides with Ricinus communis agglutinin I and Ricinus communis agglutinin II. J. Biol. Chem. 262, 12030–12039 (1987)

    CAS  PubMed  Google Scholar 

  54. Itakura Y., Nakamura-Tsuruta S., Kominami J., Sharon N., Kasai K., Hirabayashi J.: Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J. Biochem. (Tokyo). 142(459–467), (2007)

  55. Shibuya N., Goldstein I.J., Broekaert W.F., Nsimba-Lubaki M., Peeters B., Peumans W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac (alpha 2–6) Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601 (1987)

    CAS  PubMed  Google Scholar 

  56. Haseley S.R., Talaga P., Kamerling J.P., Vliegenthart J.F.: : Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface Plasmon resonance. Anal. Biochem. 274, 203–210 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. Brinkman-Van der Linden E.C.M., Sonnenburg J.L., Varki A.: Effects of sialic acid substitutions on recognition by Sambucus nigra Agglutinin and Maackia amurensis hemagglutinin. Anal. Biochem. 303, 98–104 (2002)

    Article  Google Scholar 

  58. Johansson L., Johansson P., Miller-Podraza H.: Detection by the lectins from Maackia amurensis and Sambucus nigra of 3- and 6-linked sialic acid in gangliosides with neolacto chains separated on thin-layer chromatograms and blotted to PVDF membranes. Anal. Biochem. 267, 239–241 (1999)

    Article  CAS  PubMed  Google Scholar 

  59. Allen A.K., Neuberger A., Sharon N.: The purification, composition and specificity of wheat-germ agglutinin. Biochem. J. 131, 155–162 (1973)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goldstein I.J., Hammarström S., Sundblad G.: Precipitation and carbohydrate-binding specificity studies on wheat germ agglutinin. Biochim. Biophys. Acta. 405, 53–61 (1975)

    CAS  Google Scholar 

  61. Monsigny M., Delmotte F., Hélène C.: Ligands containing heavy atoms: perturbation of phosphorescence of a tryptophan residue in the binding site of wheat germ agglutinin. Proc. Natl. Acad. Sci. U. S. A. 75, 1324–1328 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bhavanandan V.P., Katlic A.W.: The interaction of wheat germ agglutinin with sialoglycoproteins: The role of sialic acid. J. Biol. Chem. 254, 4000–4008 (1979)

    CAS  PubMed  Google Scholar 

  63. Peters B.P., Ebisu S., Irwin J., Goldstein I.J., Flashner M.: Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 18, 5505–5511 (1979)

    Article  CAS  PubMed  Google Scholar 

  64. Monsigny M., Roche A.-C., Sene C., Maget-Dana R., Delmotte F.: Sugar-lectin interactions: how does wheat germ agglutinin bind sialoglycoconjugates. Eur. J. Biochem. 104, 147–153 (1980)

    Article  CAS  PubMed  Google Scholar 

  65. Kronis K.A., Carver J.P.: Specificity of isolectins of wheat germ agglutinin for sialyloligosaccharides: a 360-MHz proton nuclear magnetic resonance binding study. Biochemistry. 21, 3050–3057 (1982)

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto K., Tsuji T., Matsumoto I., Osawa T.: Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry. 20, 5894–5589 (1981)

    Article  CAS  PubMed  Google Scholar 

  67. Xuan P., Zhang Y., Tzeng T-R J., Wan X.-F., Luo F.: A quantitative structure–activity relationship (QSAR) study on glycan array data to determine the specificities of glycan-binding proteins. Glycobiology. 22, 552–560 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. Bouckaert J., Hamelryck T., Wyns L., Loris R.: Novel structures of plant lectins and their complexes with carbohydrates. Curr. Opin. Struct. Biol. 9, 572–577 (1999)

    Article  CAS  PubMed  Google Scholar 

  69. Kuno A., Uchiyama N., Koseki-Kuno S., Ebe Y., Takashima S., Yamada M., Hirabayashi J.: Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods. 2, 851–856 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by NIH Grants CA 35329; HL103411 and DOD grant W81XWH-06-1-0013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E.V. Chandrasekaran or Khushi L. Matta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, E., Xue, J., Xia, J. et al. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures. Glycoconj J 33, 819–836 (2016). https://doi.org/10.1007/s10719-016-9678-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9678-y

Keywords

Navigation