Skip to main content

Advertisement

Log in

Roles of glycosaminoglycans and glycanmimetics in tumor progression and metastasis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Various tumor cells exhibit structural alterations in the sulfated modifications to glycosaminoglycans (GAGs). The altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) on the surfaces of tumor cells is known to play a key role in malignant transformation and tumor metastasis. The receptor molecule for the CS chains containing E-disaccharide units (CS-E) expressed on Lewis lung carcinoma (LLC) cells was recently revealed to be Receptor for Advanced Glycation End-products (RAGE). RAGE is also involved in the development of various pathological conditions including aging, infection, pulmonary fibrosis, diabetes, and Alzheimer’s disease, by binding to a wide range of ligands. RAGE binds strongly not only to CS-E, but also to HS-expressing LLC cells. Recombinant RAGE bound CS-E and HS with high affinity. Furthermore, in a mouse model, the colonization of the lungs by LLC cells was inhibited by intravenously injected CS-E, an anti-CS-E antibody, or an anti-RAGE antibody. These findings demonstrated that RAGE is at least one of the critical receptors for CS and HS chains expressed on the tumor cell surface and is involved in experimental lung metastasis, and also that CS/HS and RAGE are potential molecular targets for the treatment of pulmonary metastasis. We, hence, reviewed these findings and also several chemically synthesized small GAGmimetics that exhibit potent anti-metastatic and/or anti-tumor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CS:

Chondroitin sulfate

DS:

Dermatan sulfate

HS:

Heparan sulfate

VEGF:

Vascular endothelial growth factor

FGF2:

Fibroblast growth factor-2

GAG:

Glycosaminoglycan

References

  1. Fuster, M.M., Esko, J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5, 526–542 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473, 4–8 (1999)

    Article  PubMed  CAS  Google Scholar 

  3. Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Cazet, A., Julien, S., Bobowski, M., Krzewinski-Recchi, M.-A., Harduin-Lepers, A., S. Groux-Degroote, S., Delannoy, P.: Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 345, 1377–1383 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. Rachagani, S., Torres, M.P., Moniaux, N., Batra, S.K.: Current status of mucins in the diagnosis and therapy of cancer. Biofactors 35, 509–527 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation: Potential for therapeutics and diagnostics. Nat Rev Drug Discov 4, 477–488 (2005)

    Article  PubMed  CAS  Google Scholar 

  7. Yamada, S., Sugahara, K.: Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol 5, 289–301 (2008)

    Article  PubMed  CAS  Google Scholar 

  8. Mizumoto, S., Sugahara, K.: FEBS J 280, 2462–2470 (2013)

    Article  PubMed  CAS  Google Scholar 

  9. Li, F., ten Dam, G.B., Murugan, S., Yamada, S., Hashiguchi, T., Mizumoto, S., Oguri, K., Okayama, M., van Kuppevelt, T.H., Sugahara, K.: Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells. J Biol Chem 283, 34294–34304 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Xu, D., Young, J., Song, D., Esko, J.D.: Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem 286, 41736–41744 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Purushothaman, A., Fukuda, J., Mizumoto, S., ten Dam, G.B., van Kuppevelt, T.H., Kitagawa, H., Mikami, T., Sugahara, K.: Functions of chondroitin sulfate/dermatan sulfate chains in the brain development: Critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7. J Biol Chem 282, 19442–19452 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. ten Dam, G.B., van de Westerlo, E.M.A., Purushothaman, A., Stan, R.V., Bulten, J., Sweep, F.C.G.J., Massuger, L.F., Sugahara, K., van Kuppevelt, T.H.: Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in VEGF binding. Am J Pathol 171, 1324–1333 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sugahara, K.N., Hirata, T., Tanaka, T., Ogino, S., Takeda, M., Terasawa, H., Shimada, I., Tamura, J., ten Dam, G.B., van Kuppevelt, T.H., Miyasaka, M.: Chondroitin sulfate E fragments enhance CD44 cleavage and CD44-dependent motility in tumor cells. Cancer Res 68, 7191–7199 (2008)

    Article  PubMed  CAS  Google Scholar 

  14. Basappa, Murugan, S., Sugahara, K.N., Lee, C.M., ten Dam, G.B., van Kuppevelt, T.H., Miyasaka, M., Yamada, S., Sugahara, K.: Involvement of chondroitin sulfate E in the liver tumor focal formation of murine osteosarcoma cells. Glycobiology 19, 735–742 (2009)

  15. Mizumoto, S., Takahashi, J., Sugahara, K.: Receptor for advanced glycation gnd products (RAGE) functions as a receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or the sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells. J Biol Chem 287, 18985–18994 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Deepa, S.S., Kalayanamitra, K., Ito, Y., Kongtaweelert, P., Fukui, S., Yamada, S., Mikami, T., Sugahara, K.: Novel sulfated octa- and decasaccharides from squid cartilage chondroitin sulfate-E: Sequencing and application for determination of the epitope structure of monoclonal antibody MO-225. Biochemistry 46, 2453–2465 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. Mundhenke, C., Meyer, K., Drew, S., Friedl, A.: Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 receptor binding in breast carcinomas. Am J Pathol 160, 185–194 (2002)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Iozzo, R.V., San Antonio, J.D.: Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108, 349–355 (2001)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chu, C.L., Goerges, A.L., Nugent, M.A.: Identification of common and specific growth factor binding sites in heparan sulfate proteoglycans. Biochemistry 44, 12203–12213 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. Pisano, C., Vlodavsky, I., Ilan, N., Zunino, F.: The potential of heparanase as a therapeutic target in cancer. Biochem Pharmacol 89, 12–19 (2014)

    Article  PubMed  CAS  Google Scholar 

  21. Ishida, K., Wierzba, M.K., Teruya, T., Simizu, S., Osada, H.: Novel heparan sulfate mimetic compounds as antitumor agents. Chem Biol 11, 367–377 (2004)

    Article  PubMed  CAS  Google Scholar 

  22. Basappa, Murugan,S., Kavitha, V.C., Purushothaman, A., Nevin, G.K., Sugahara, K., Rangappa, S.K.: A small oxazine compound as an anti-tumor agent: A novel pyranoside mimetic that binds to VEGF, HB-EGF, and TNF-α. Cancer Lett 297, 231–243 (2010)

  23. Basappa, Sugahara, K., Thimmaiah, K.N., Bid, H.K., Houghton, P.J., Rangappa, K.S.: Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule. PLoS ONE 7(8), e39444 (2012). doi:10.1371/journal.pone.0039444

  24. Gi, H.J., Xiang, Y., Schinazi, R.F., Zhao, K.: Synthesis of dihydroisoxazole nucleoside and nucleotide analogs. J Org Chem 62, 88–92 (1997)

    Article  PubMed  CAS  Google Scholar 

  25. Wagner, C.R., Iyer, V.V., McIntee, E.J.: Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev 20, 417–451 (2000)

    Article  PubMed  CAS  Google Scholar 

  26. Sadashiva, M.P., Basappa, N.S., Li, F., Manu, K.A., Sengottuvelan, M., Prasanna, D.S., Anilkumar, N.C., Sethi, G., Sugahara, K., Rangappa, K.S.: Anti-cancer activity of novel dibenzo [b, f] azepine tethered isoxazoline derivatives. BMC Chem Biol 12, 5 (2012). doi:10.1186/1472-6769-12-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (B) 23390016 20390019 (to K. S.) and a Grant-in-Aid for Challenging Exploratory Research 25670018 (to K. S.) from the Japan Society for the Promotion of Science (JSPS). This research was supported in part by the University Grants Commission (41-257-2012-SR), Vision Group Science and Technology, Department of Science and Technology (No. SR/FT/LS-142/2012) to Basappa. Basappa also thanks Karnataka University, INDIA for the PAVATE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Sugahara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basappa, Rangappa, K.S. & Sugahara, K. Roles of glycosaminoglycans and glycanmimetics in tumor progression and metastasis. Glycoconj J 31, 461–467 (2014). https://doi.org/10.1007/s10719-014-9551-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9551-9

Keywords

Navigation