Skip to main content

Advertisement

Log in

Structure-activity relationship study of WSS25 derivatives with anti-angiogenesis effects

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

WGEW, an α(1-4) linked glucan with an α(1-4) linked branch attached to C-6, was isolated from the rhizoma of Gastrodia elata Bl. WSS25, a sulfated derivative of WGEW, was reported to inhibit angiogenesis by disrupting BMP2/Smad/Id1 signaling pathway. However, the structure-activity relationship (SAR) for WSS25 is not known. To study the SAR, seven sulfated saccharides derived from WGEW degradation products, six sulfated polysaccharides with varying degrees of substitution, and four aminopropylated, carboxymethylated, phosphorylated, and acetylated derivatives of WGEW were prepared. A sulfated, unbranched product of polysaccharide was also obtained. The structural features of these derivatives were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy. An HMEC-1 cell tube formation assay was employed to measure the antiangiogenic effect of the derivatives. The results indicated that only sulfated polysaccharides with molecular weights of more than 41,000 Da could inhibit HMEC-1 cell tube formation. The inhibition effect was dependent on the presence of a sulfate group, since the tube formation was not blocked by aminopropylated, carboxymethylated, phosphorylated, or acetylated WGEW. A higher degree of sulfate substitution on the polysaccharide led to a stronger inhibitory effect, and the degree of sulfate substitution between 0.173 and 0.194 was found to be optimal. Interestingly, the WGEW side chain was not required for anti-tube formation activity. All these preliminary results may provide a clue for further modification of the core structure of WSS25 to discover polysaccharide derivatives as novel anti-angiogenic inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

BMP2:

Bone morphogenic protein 2

DMSO:

Dimethyl sulfoxide

DS:

Degree of substitution

FBS:

Fetal bovine serum

FGF2:

Fibroblast growth factor 2

GC-MS:

Gas chromatography–mass spectrometry

HMEC-1:

Human microvascular endothelial cells

HPGPC:

High performance gel permeation chromatography

HS:

Heparan sulfate

Id1:

Inhibitor of DNA binding 1

IR:

Infrared

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MW :

Molecular weight

NMR:

Nuclear magnetic resonance

QCM:

Quartz crystal microbalance

SAR:

Structure-activity relationship

TFA:

Trifluoroacetic acid

VEGF:

Vascular endothelial growth factor

References

  1. Matter, A.: Tumor angiogenesis as a therapeutic target. Drug Discov. Today. 6, 1005–1024 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Raica, M., Cimpean, A.M., Ribatti, D.: Angiogenesis in pre-malignant conditions. Eur. J. Cancer 45, 1924–1934 (2009)

    Article  PubMed  CAS  Google Scholar 

  3. Folkman, J.: Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002)

    PubMed  CAS  Google Scholar 

  4. Folkman, J.: Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. Carmeliet, P., Jain, R.K.: Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. Spillmann, D.: Heparan sulfate: Anchor for viral intruders? Biochimie 83, 811–817 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. Fujita, K., Takechi, E., Sakamoto, N., Sumiyoshi, N., Izumi, S., Miyamoto, T., Matsuura, S., Tsurugaya, T., Akasaka, K., et al.: HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development. Mech. Develop. 127, 235–245 (2010)

    Article  CAS  Google Scholar 

  8. Forsten-Williams, K., Chua, C.C., Nugent, M.A.: The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J. Theor. Biol. 233, 483–499 (2005)

    Article  PubMed  CAS  Google Scholar 

  9. Nyberg, K., Ekblad, M., Bergstrom, T., Freeman, C., Parish, C.R., Ferro, V., Trybala, E.: The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral. Res. 63, 15–24 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Kasbauer, C.W., Paper, D.H., Franz, G.: Sulfated beta-(1–>4)-galacto-oligosaccharides and their effect on angiogenesis. Carbohydr. Res. 330, 427–430 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Casu, B., Naggi, A., Torri, G.: Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer. Matrix Biol. 29, 442–452 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, W., Swanson, R., Xiong, Y., Richard, B., Olson, S.T.: Antiangiogenic antithrombin blocks the heparan sulfate-dependent binding of proangiogenic growth factors to their endothelial cell receptors: evidence for differential binding of antiangiogenic and anticoagulant forms of antithrombin to proangiogenic heparan sulfate domains. J. Biol. Chem. 281, 37302–37310 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. Qiu, H., Yang, B., Pei, Z.C., Zhang, Z., Ding, K.: WSS25 inhibits growth of xenografted hepatocellular cancer cells in nude mice by disrupting angiogenesis via blocking bone morphogenetic protein (BMP)/Smad/Id1 signaling. J. Biol. Chem. 285, 32638–32646 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. Qiu, H., Tang, W., Tong, X., Ding, K., Zuo, J.: Structure elucidation and sulfated derivatives preparation of two alpha-D-glucans from Gastrodia elata Bl. and their anti-dengue virus bioactivities. Carbohydr. Res 342, 2230–2236 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. Inoue, K., Kawamoto, K., Nakajima, H., Kohno, M., Kadoya, S., Mizuno, D.: Chemical modification and anti-tumor activity of a D-Manno-D-Glucan from Microellobosporia-Grisea. Carbohydr. Res. 115, 199–208 (1983)

    Article  CAS  Google Scholar 

  16. Bao, X., Duan, J., Fang, X., Fang, J.: Chemical modifications of the (1– > 3)-alpha-D-glucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immunological activity. Carbohydr. Res. 336, 127–140 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. Suflet, D.M., Chitanu, G.C., Popa, V.I.: Phosphorylation of polysaccharides: New results on synthesis and characterisation of phosphorylated cellulose. React. Funct. Polym. 66, 1240–1249 (2006)

    Article  CAS  Google Scholar 

  18. Ueno, Y., Okamoto, Y., Yamauchi, R., Kato, K.: An anti-tumor activity of the alkali-soluble polysaccharide (and its derivatives) obtained from the Sclerotia of Grifora-Umbellata (Fr) Pilat. Carbohydr. Res. 101, 160–167 (1982)

    Article  PubMed  CAS  Google Scholar 

  19. Wang, L., Xie, B.J., Shi, J., Xue, S., Deng, Q.C., Wei, Y., Tian, B.Q.: Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocolloid 24, 208–216 (2010)

    Article  CAS  Google Scholar 

  20. Needs, P.W., Selvendran, R.R.: Avoiding oxidative-degradation during sodium-hydroxide methyl iodide-mediated carbohydrate methylation in dimethyl-sulfoxide. Carbohydr. Res. 245, 1–10 (1993)

    Article  CAS  Google Scholar 

  21. Xu, Y., Dong, Q., Qiu, H., Cong, R., Ding, K.: Structural characterization of an arabinogalactan from Platycodon grandiflorum roots and antiangiogenic activity of its sulfated derivative. Biomacromolecules 11, 2558–2566 (2010)

    Article  PubMed  CAS  Google Scholar 

  22. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)

    Article  PubMed  CAS  Google Scholar 

  23. Hu, K., Liu, Q., Wang, S.C., Ding, K.: New oligosaccharides prepared by acid hydrolysis of the polysaccharides from Nerium indicum Mill and their anti-angiogenesis activities. Carbohydr. Res. 344, 198–203 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. Huisman, M.M.H., Schols, H.A., Voragen, A.G.J.: Enzymatic degradation of cell wall polysaccharides from soybean meal. Carbohydr. Polym. 38, 299–307 (1999)

    Article  CAS  Google Scholar 

  25. Velmurugan, R., Muthukumar, K.: Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresour. Technol. (2011). doi:10.1016/j.biortech.2011.04.045

  26. Miani, M., Gianni, R., Liut, G., Rizzo, R., Toffanin, R., Delben, F.: Gel beads from novel ionic polysaccharides. Carbohydr. Polym. 55, 163–169 (2004)

    Article  CAS  Google Scholar 

  27. Xu, J., Liu, W., Yao, W.B., Pang, X.B., Yin, D.K., Gao, X.D.: Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro. Carbohydr. Polym. 78, 227–234 (2009)

    Article  CAS  Google Scholar 

  28. Suflet, D.M., Nicolescu, A., Popescu, I., Chitanu, G.C.: Phosphorylated polysaccharides. 3. Synthesis of phosphorylated curdlan and its polyelectrolyte behaviour compared with other phosphorylated polysaccharides. Carbohydr. Polym. 84, 1176–1181 (2011)

    Article  CAS  Google Scholar 

  29. Zhang, L., Li, X., Xu, X., Zeng, F.: Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydr. Res. 340, 1515–1521 (2005)

    Article  PubMed  CAS  Google Scholar 

  30. Lyden, D., Young, A.Z., Zagzag, D., Yan, W., Gerald, W., O’Reilly, R., Bader, B.L., Hynes, R.O., Zhuang, Y., et al.:: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001)

    Article  PubMed  CAS  Google Scholar 

  32. Valdimarsdottir, G., Goumans, M.J., Rosendahl, A., Brugman, M., Itoh, S., Lebrin, F., Sideras, P., ten Dijke, P.: Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106, 2263–2270 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. Parish, C.R., Freeman, C., Brown, K.J., Francis, D.J., Cowden, W.B.: Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 59, 3433–3441 (1999)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by New Drug Creation and Manufacturing Program (2012ZX09301001-003), National Science Fund for Distinguished Young Scholars (81125025), and the funds for Industry-University-Research Institution Alliance in Guangdong Province, China (2010A090200041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Fang or Kan Ding.

Additional information

Xia Chen and Fei Xiao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Xiao, F., Wang, Y. et al. Structure-activity relationship study of WSS25 derivatives with anti-angiogenesis effects. Glycoconj J 29, 389–398 (2012). https://doi.org/10.1007/s10719-012-9424-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9424-z

Keywords

Navigation