Skip to main content

Advertisement

Log in

N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Vitellogenin (Vg) is the precursor of the egg yolk glycoprotein of crustaceans. In the prawn Macrobrachium rosenbergii, Vg is synthesized in the hepatopancreas, secreted to the hemolymph, and taken up by means of receptor-mediated endocytosis into the oocytes. The importance of glycosylation of Vg lies in its putative role in the folding, processing and transport of this protein to the egg yolk and in the fact that the N-glycan moieties could provide a source of carbohydrate during embryogenesis. The present study describes, for the first time, the structure of the glycan moieties and their sites of attachment to the Vg of M. rosenbergii. Bioinformatics analysis revealed seven putative N-glycosylation sites in M. rosenbergii Vg; two of these glycosylation sites are conserved throughout the Vgs of decapod crustaceans from the Pleocyemata suborder (N 159 and N 660). The glycosylation of six putative sites of M. rosenbergii Vg (N 151, N 159, N 168, N 614, N 660 and N 2300) was confirmed; three of the confirmed glycosylation sites are localized around the N-terminally conserved N-glycosylation site N 159. From a theoretical three-dimensional structure, these three N-glycosylated sites N 151, N 159, and N 168 were localized on the surface of the Vg consensus sequence. In addition, an uncommon high mannose N-linked oligosaccharide structure with a glucose cap (Glc1Man9GlcNAc2) was characterized in the secreted Vg. These findings thus make a significant contribution to the structural elucidating of the crustacean Vg glycan moieties, which may shed light on their role in protein folding and transport and in recognition between Vg and its target organ, the oocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

acetonitrile

DIG:

digoxigenin

DSA:

Datura stramonium agglutinin

DTT:

dithiothreitol

ER:

endoplasmic reticulum

Glc:

glucose

GlcNAc:

N-acetylglucosamine

GII:

glucosidase II

GNA:

Galanthus nevallis agglutinin

GU:

glucose unit

HDL:

high density lipoprotein

Hex:

hexose

HexNAc:

N-acetylhexosamine

HPLC:

high performance liquid chromatography

JBM:

jack bean α-mannosidase

MAA:

Maackia amurensis agglutinin

Man:

mannose

MALDI:

matrix-assisted laser desorption/ionization

PNA:

peanut (Arachis hypogaea) agglutinin

PNGase F:

peptide-N-glycosidase F

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SNA:

Sambucus nigra agglutinin

TFA:

trifluoroacetic acid

Vg:

vitellogenin

References

  1. Tata, J.R.: Coordinated assembly of the developing egg. BioEssays 4, 197–201 (1986)

    Article  CAS  PubMed  Google Scholar 

  2. Pan, M.L., Bell, W.J., Telfer, W.H.: Vitellogenic blood protein synthesis by insect fat body. Science 165, 393–394 (1969)

    Article  CAS  PubMed  Google Scholar 

  3. Abdu, U., Davis, C., Khalaila, I., Sagi, A.: The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen. Comp. Endocrinol. 127, 263–272 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Y.N., Tseng, D.Y., Ho, P.Y., Kuo, C.M.: Site of vitellogenin synthesis determined from a cDNA encoding a vitellogenin fragment in the freshwater giant prawn, Macrobrachium rosenbergii. Mol. Reprod. Dev. 54, 215–222 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Tseng, D.Y., Chen, Y.N., Kou, G.H., Lo, C.F., Kuo, C.M.: Hepatopancreas is the extraovarian site of vitellogenin synthesis in black tiger shrimp, Penaeus monodon. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 909–917 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Opresko, L.K., Wiley, H.S.: Receptor-mediated endocytosis in Xenopus oocytes. I. Characterization of the vitellogenin receptor system. J. Biol. Chem. 262, 4109–4115 (1987)

    CAS  PubMed  Google Scholar 

  7. Shen, X., Steyrer, E., Retzek, H., Sanders, E.J., Schneider, W.J.: Chicken oocyte growth: receptor-mediated yolk deposition. Cell Tissue Res. 272, 459–471 (1993)

    Article  CAS  PubMed  Google Scholar 

  8. Snigirevskaya, E.S., Sappington, T.W., Raikhel, A.S.: Internalization and recycling of vitellogenin receptor in the mosquito oocyte. Cell Tissue Res. 290, 175–183 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Warrier, S., Subramoniam, T.: Receptor mediated yolk protein uptake in the crab Scylla serrata: crustacean vitellogenin receptor recognizes related mammalian serum lipoproteins. Mol. Reprod. Dev. 61, 536–548 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Hafer, J., Ferenz, H.J.: Locust vitellogenin receptor — an acidic glycoprotein with N-linked and O-linked oligosaccharides. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 100, 579–586 (1991)

    Article  Google Scholar 

  11. Finn, R.N.: Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins. Biol. Reprod. 76, 926–935 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Tirumalai, R., Subramoniam, T.: Carbohydrate components of lipovitellin of the sand crab Emerita asiatica. Mol. Reprod. Dev. 58, 54–62 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Wallace, R.A., Walker, S.L., Hauschka, P.V.: Crustacean lipovitellin. Isolation and characterization of the major high-density lipoprotein from the eggs of decapods. Biochemistry 6, 1582–1590 (1967)

    Article  CAS  PubMed  Google Scholar 

  14. Khalaila, I., Peter-Katalinic, J., Tsang, C., Radcliffe, C.M., Aflalo, E.D., Harvey, D.J., Dwek, R.A., Rudd, P.M., Sagi, A.: Structural characterization of the N-glycan moiety and site of glycosylation in vitellogenin from the decapod crustacean Cherax quadricarinatus. Glycobiology 14, 767–774 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Ellgaard, L., Molinari, M., Helenius, A.: Setting the standards: Quality control in the secretory pathway. Science 286, 1882–1888 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Matsuura, F., Ohta, M., Murakami, K., Matsuki, Y.: Structures of asparagine linked oligosaccharides of immunoglobulins (IgY) isolated from egg-yolk of Japanese quail. Glycoconj. J. 10, 202–213 (1993)

    Article  CAS  PubMed  Google Scholar 

  17. Ohta, M., Hamako, J., Yamamoto, S., Hatta, H., Kim, M., Yamamoto, T., Oka, S., Mizuochi, T., Matsuura, F.: Structures of asparagine-linked oligosaccharides from hen egg-yolk antibody (IgY). Occurrence of unusual glucosylated oligo-mannose type oligosaccharides in a mature glycoprotein. Glycoconj. J. 8, 400–413 (1991)

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, N., Khoo, K.H., Chen, C.M., Chen, H.C., Lee, Y.C.: N-glycan structures of pigeon IgG: A major serum glycoprotein containing Galalpha1–4 Gal termini. J. Biol. Chem. 278, 46293–46306 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Arnold, J.N., Radcliffe, C.M., Wormald, M.R., Royle, L., Harvey, D.J., Crispin, M., Dwek, R.A., Sim, R.B., Rudd, P.M.: The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J. Immunol. 173, 6831–6840 (2004)

    CAS  PubMed  Google Scholar 

  20. Kim, S., Hwang, S.K., Dwek, R.A., Rudd, P.M., Ahn, Y.H., Kim, E.H., Cheong, C., Kim, S.I., Park, N.S., Lee, S.M.: Structural determination of the N-glycans of a lepidopteran arylphorin reveals the presence of a monoglucosylated oligosaccharide in the storage protein. Glycobiology 13, 147–157 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Endo, T., Hoshi, M., Endo, S., Arata, Y., Kobata, A.: Structures of the sugar chains of a major glycoprotein present in the egg jelly coat of a starfish, Asterias amurensis. Arch. Biochem. Biophys. 252, 105–112 (1987)

    Article  CAS  PubMed  Google Scholar 

  22. Varki, A., Cummings, R., et al.: Essentials of glycobiology. Cold Spring Harbor Laboratory Press, NY (1999)

    Google Scholar 

  23. Okuno, A., Yang, W.J., Jayasankar, V., Saido-Sakanaka, H., Huong, D.T., Jasmani, S., Atmomarsono, M., Subramoniam, T., Tsutsui, N., Ohira, T., Kawazoe, I., Aida, K., Wilder, M.N.: Deduced primary structure of vitellogenin in the giant freshwater prawn, Macrobrachium rosenbergii, and yolk processing during ovarian maturation. J. Exp. Zool. 292, 417–429 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Gupta, R., Brunak, S.: Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput., 310–322 (2002)

  25. Julenius, K., Molgaard, A., Gupta, R., Brunak, S.: Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Lambert, C., Leonard, N., De Bolle, X., Depiereux, E.: ESyPred3D: Prediction of proteins 3D structures. Bioinformatics (Oxford, England) 18, 1250–1256 (2002)

    Article  CAS  Google Scholar 

  27. Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. Abdu, U., Yehezkel, G., Sagi, A.: Oocyte development and polypeptide dynamics during ovarian maturation in the red-claw crayfish Cherax quadricarinatus. Invert. Reprod. Develop. 37, 75–83 (2000)

    Google Scholar 

  29. Kuster, B., Wheeler, S.F., Hunter, A.P., Dwek, R.A., Harvey, D.J.: Sequencing of N-linked oligosaccharides directly from protein gels: In-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250, 82–101 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Tseneklidou-Stoeter, D., Gerwig, G.J., Kamerling, J.P., Spindler, K.D.: Characterization of N-linked carbohydrate chains of the crayfish, Astacus leptodactylus hemocyanin. Biol. Chem. Hoppe-Seyler 376, 531–537 (1995)

    CAS  PubMed  Google Scholar 

  31. Zal, F., Kuster, B., Green, B.N., Harvey, D.J., Lallier, F.H.: Partially glucose-capped oligosaccharides are found on the hemoglobins of the deep-sea tube worm Riftia pachyptila. Glycobiology 8, 663–673 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. Williams, P.J., Wormald, M.R., Dwek, R.A., Rademacher, T.W., Parker, G.F., Roberts, D.R.: Characterisation of oligosaccharides from Drosophila melanogaster glycoproteins. Biochim. Biophys. Acta. 1075, 146–153 (1991)

    CAS  PubMed  Google Scholar 

  33. Ryan, R.O., Anderson, D.R., Grimes, W.J., Law, J.H.: Arylphorin from Manduca sexta: Carbohydrate structure and immunological studies. Arch. Biochem. Biophys. 243, 115–124 (1985)

    Article  CAS  PubMed  Google Scholar 

  34. Deprez, P., Gautschi, M., Helenius, A.: More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol. Cell 19, 183–195 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki, N., Lee, Y.C.: Site-specific N-glycosylation of chicken serum IgG. Glycobiology 14, 275–292 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Kimura, Y., Hess, D., Sturm, A.: The N-glycans of jack bean alpha-mannosidase. Structure, topology and function. Eur. J. Biochem. 264, 168–175 (1999)

    Article  CAS  PubMed  Google Scholar 

  37. Faid, V., Evjen, G., Tollersrud, O.K., Michalski, J.C., Morelle, W.: Site-specific glycosylation analysis of the bovine lysosomal alpha-mannosidase. Glycobiology 16, 440–461 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Heikinheimo, P., Helland, R., Leiros, H.K., Leiros, I., Karlsen, S., Evjen, G., Ravelli, R., Schoehn, G., Ruigrok, R., Tollersrud, O.K., McSweeney, S., Hough, E.: The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J. Mol. Biol. 327, 631–644 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Phiriyangkul, P., Utarabhand, P.: Molecular characterization of a cDNA encoding vitellogenin in the banana shrimp, Penaeus (Litopenaeus) merguiensis and sites of vitellogenin mRNA expression. Mol. Reprod. Dev. 73, 410–423 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Raviv, S., Parnes, S., Segall, C., Davis, C., Sagi, A.: Complete sequence of Litopenaeus vannamei (Crustacea: Decapoda) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. Gen. Comp. Endocrinol. 145, 39–50 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Zmora, N., Trant, J., Chan, S.M., Chung, J.S.: Vitellogenin and its messenger RNA during ovarian development in the female blue crab, Callinectes sapidus: Gene expression, synthesis, transport, and cleavage. Biol. Reprod. 77, 138–146 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Tsutsui, N., Saido-Sakanaka, H., Yang, W.J., Jayasankar, V., Jasmani, S., Okuno, A., Ohira, T., Okumura, T., Aida, K., Wilder, M.N.: Molecular characterization of a cDNA encoding vitellogenin in the coonstriped shrimp, Pandalus hypsinotus and site of vitellogenin mRNA expression. J. Exp. Zoolog. A Comp. Exp. Biol. 301, 802–814 (2004)

    Google Scholar 

  43. Tiu, S.H., Hui, H.L., Tsukimura, B., Tobe, S.S., He, J.G., Chan, S.M.: Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods. Gen. Comp. Endocrinol. 160, 36–46 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. Kang, B.J., Nanri, T., Lee, J.M., Saito, H., Han, C.H., Hatakeyama, M., Saigusa, M.: Vitellogenesis in both sexes of gonochoristic mud shrimp, Upogebia major (Crustacea): Analyses of vitellogenin gene expression and vitellogenin processing. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 149, 589–598 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Yang, F., Xu, H.T., Dai, Z.M., Yang, W.J.: Molecular characterization and expression analysis of vitellogenin in the marine crab Portunus trituberculatus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 142, 456–464 (2005)

    PubMed  Google Scholar 

  46. Mak, A.S., Choi, C.L., Tiu, S.H., Hui, J.H., He, J.G., Tobe, S.S., Chan, S.M.: Vitellogenesis in the red crab Charybdis feriatus: Hepatopancreas-specific expression and farnesoic acid stimulation of vitellogenin gene expression. Mol. Reprod. Dev. 70, 288–300 (2005)

    Article  CAS  PubMed  Google Scholar 

  47. Tsang, W.S., Quackenbush, L.S., Chow, B.K., Tiu, S.H., He, J.G., Chan, S.M.: Organization of the shrimp vitellogenin gene: Evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene 303, 99–109 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. Xie, S., Sun, L., Liu, F., Dong, B.: Molecular characterization and mRNA transcript profile of vitellogenin in Chinese shrimp, Fenneropenaeus chinensis. Mol. Biol. Rep. (2007)

  49. Avarre, J.C., Michelis, R., Tietz, A., Lubzens, E.: Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biol. Reprod. 69, 355–364 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. Tiu, S.H., Hui, J.H., He, J.G., Tobe, S.S., Chan, S.M.: Characterization of vitellogenin in the shrimp Metapenaeus ensis: Expression studies and hormonal regulation of MeVg1 transcription in vitro. Mol. Reprod. Dev. 73, 424–436 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Tsutsui, N., Kawazoe, I., Ohira, T., Jasmani, S., Yang, W.J., Wilder, M.N., Aida, K.: Molecular characterization of a cDNA encoding vitellogenin and its expression in the hepatopancreas and ovary during vitellogenesis in the kuruma prawn, Penaeus japonicus. Zool. Sci. 17, 651–660 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ayana Benet-Perlberg and the team from the Dor experimental station of the Ministry of Agriculture for providing animal culture facilities, Mr. Tomer Ventura for his technical assistance and Ms. Lilah Glazer for her help in generating the 3D model. This work was supported by an internal grant from Ben Gurion University of the Negev; I. K. is the incumbent of MAOF fellowship from the Israel Council for Higher Education, Planning and Budgeting Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isam Khalaila.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, Z., Parnes, S., Wiel, S. et al. N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites. Glycoconj J 27, 159–169 (2010). https://doi.org/10.1007/s10719-009-9268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9268-3

Keywords

Navigation