Skip to main content

Advertisement

Log in

An HPLC-MALDI MS method for N-glycan analyses using smaller size samples: Application to monitor glycan modulation by medium conditions

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Existing HPLC methods can provide detailed structure and isomeric information, but are often slow and require large initial sample sizes. In this study, a previously established two-dimensional HPLC technique was adapted to a two-step identification method for smaller sample sizes. After cleavage from proteins, purification, and fluorescent labeling, glycans were analyzed on a 2-mm reverse phase HPLC column on a conventional HPLC and spotted onto a MALDI-TOF MS plate using an automated plate spotter to determine molecular weights. A direct correlation was found for 25 neutral oligosaccharides between the 2-mm Shim-Pack VP-ODS HPLC column (Shimadzu) and the 6-mm CLC-ODS column (Shimadzu) of the standard two- and three-dimensional methods. The increased throughput adaptations allowed a 100-fold reduction in required amounts of starting protein. The entire process can be carried out in 2–3 days for a large number of samples as compared to 1–2 weeks per sample for previous two-dimensional HPLC methods. The modified method was verified by identifying N-glycan structures, including specifying two different galactosylated positional isomers, of an IgG antibody from human sera samples. Analysis of tissue plasminogen activator (t-PA) from CHO cell cultures under varying culture conditions illustrated how the method can identify changes in oligosaccharide structure in the presence of different media environments. Raising glutamine concentrations or adding ammonia directly to the culture led to decreased galactosylation, while substituting GlutaMAX™-I, a dipeptide of L-alanine and L-glutamine, resulted in structures with more galactosylation. This modified system will enable glycoprofiling of smaller glycoprotein samples in a shorter time period and allow a more rapid evaluation of the effects of culture conditions on expressed protein glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Butler, M.: Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68, 283–291 (2005). doi:10.1007/s00253-005-1980-8

    Article  CAS  PubMed  Google Scholar 

  2. Nimmerjahn, F., Anthony, R.M., Ravetch, J.V.: Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl. Acad. Sci. USA 104, 8433–8437 (2007). doi:10.1073/pnas.0702936104

    Article  CAS  PubMed  Google Scholar 

  3. Rabouille, C., Hui, N., Hunte, F., Kieckbusch, R., Berger, E.G., Warren, G., Nilsson, T.: Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108(Pt 4), 1617–1627 (1995)

    CAS  PubMed  Google Scholar 

  4. Umaña, P., Bailey, J.E.: A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55, 890–908 (1997). doi:10.1002/(SICI)1097-0290(19970920)55:6<890::AID-BIT7>3.0.CO;2-B

    Article  PubMed  Google Scholar 

  5. Krambeck, F.J., Betenbaugh, M.J.: A mathematical model of N-linked glycosylation. Biotechnol. Bioeng. 92, 711–728 (2005). doi:10.1002/bit.20645

    Article  CAS  PubMed  Google Scholar 

  6. Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B., Rasmussen, J.R.: The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (N. Y.) 9, 1347–1355 (1991). doi:10.1038/nbt1291-1347

    Article  CAS  Google Scholar 

  7. Wright, A., Morrison, S.L.: Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15, 26–32 (1997). doi:10.1016/S0167-7799(96)10062-7

    Article  CAS  PubMed  Google Scholar 

  8. Jenkins, N., Parekh, R.B., James, D.C.: Getting the glycosylation right: implications for the biotechnology industry. Nat. Biotechnol. 14, 975–981 (1996). doi:10.1038/nbt0896-975

    Article  CAS  PubMed  Google Scholar 

  9. Betenbaugh, M.J., Tomiya, N., Narang, S., Hsu, J.T., Lee, Y.C.: Biosynthesis of human-type N-glycans in heterologous systems. Curr. Opin. Struct. Biol. 14, 601–606 (2004). doi:10.1016/j.sbi.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Stubiger, G., Marchetti, M., Nagano, M., Reichel, C., Gmeiner, G., Allmaier, G.: Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 19, 728–742 (2005). doi:10.1002/rcm.1830

    Article  PubMed  Google Scholar 

  11. Choi, O., Tomiya, N., Kim, J.H., Slavicek, J.M., Betenbaugh, M.J., Lee, Y.C.: N-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system. Glycobiology 13, 539–548 (2003). doi:10.1093/glycob/cwg071

    Article  CAS  PubMed  Google Scholar 

  12. Maslen, S., Sadowski, P., Adam, A., Lilley, K., Stephens, E.: Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 78, 8491–8498 (2006). doi:10.1021/ac0614137

    Article  CAS  PubMed  Google Scholar 

  13. Tomiya, N., Awaya, J., Kurono, M., Endo, S., Arata, Y., Takahashi, N.: Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal. Biochem. 171, 73–90 (1988). doi:10.1016/0003-2697(88)90126-1

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, Y., Miyazaki, M., Ito, E., Suzuki, M., Yamashita, T., Taira, H., Suzuki, A.: Structural characterization of N-glycans of cauxin by MALDI-TOF mass spectrometry and nano LC-ESI-mass spectrometry. Biosci. Biotechnol. Biochem. 71, 811–816 (2007). doi:10.1271/bbb.60599

    Article  CAS  PubMed  Google Scholar 

  15. Maslen, S.L., Goubet, F., Adam, A., Dupree, P., Stephens, E.: Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS. Carbohydr. Res. 342, 724–735 (2007). doi:10.1016/j.carres.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  16. Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R., Altmann, F.: Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8, 2858–2871 (2008). doi:10.1002/pmic.200700968

    Article  CAS  PubMed  Google Scholar 

  17. Kirsch, S., Zarei, M., Cindric, M., Muthing, J., Bindila, L., Peter-Katalinic, J.: On-line nano-HPLC/ESI QTOF MS and tandem MS for separation, detection, and structural elucidation of human erythrocytes neutral glycosphingolipid mixture. Anal. Chem. 80, 4711–4722 (2008). doi:10.1021/ac702175f

    Article  CAS  PubMed  Google Scholar 

  18. Zarei, M., Kirsch, S., Muthing, J., Bindila, L., Peter-Katalinic, J.: Automated normal phase nano high performance liquid chromatography/matrix assisted laser desorption/ionization mass spectrometry for analysis of neutral and acidic glycosphingolipids. Anal. Bioanal. Chem. 391, 289–297 (2008). doi:10.1007/s00216-008-1932-0

    Article  CAS  PubMed  Google Scholar 

  19. Gawlitzek, M., Valley, U., Nimtz, M., Wagner, R., Conradt, H.S.: Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J. Biotechnol. 42, 117–131 (1995). doi:10.1016/0168-1656(95)00065-X

    Article  CAS  PubMed  Google Scholar 

  20. Hills, A.E., Patel, A., Boyd, P., James, D.C.: Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol. Bioeng. 75, 239–251 (2001). doi:10.1002/bit.10022

    Article  CAS  PubMed  Google Scholar 

  21. Gawlitzek, M., Ryll, T., Lofgren, J., Sliwkowski, M.B.: Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol. Bioeng. 68, 637–646 (2000). doi:10.1002/(SICI)1097-0290(20000620)68:6<637::AID-BIT6>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  22. Andersen, D.C., Bridges, T., Gawlitzek, M., Hoy, C.: Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol. Bioeng. 70, 25–31 (2000). doi:10.1002/1097-0290(20001005)70:1<25::AID-BIT4>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  23. Valley, U., Nimtz, M., Conradt, H.S., Wagner, R.: Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol. Bioeng. 64, 401–417 (1999). doi:10.1002/(SICI)1097-0290(19990820)64:4<401::AID-BIT3>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  24. Gawlitzek, M., Papac, D.I., Sliwkowski, M.B., Ryll, T.: Incorporation of 15 N from ammonium into the N-linked oligosaccharides of an immunoadhesin glycoprotein expressed in Chinese hamster ovary cells. Glycobiology 9, 125–131 (1999). doi:10.1093/glycob/9.2.125

    Article  CAS  PubMed  Google Scholar 

  25. Ryll, T., Valley, U., Wagner, R.: Biochemistry of growth inhibition by ammonium ions in mammalian cells. Biotechnol. Bioeng. 44, 184–193 (1994). doi:10.1002/bit.260440207

    Article  CAS  PubMed  Google Scholar 

  26. Yang, M., Butler, M.: Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol. Prog. 18, 129–138 (2002). doi:10.1021/bp0101334

    Article  CAS  PubMed  Google Scholar 

  27. Yang, M., Butler, M.: Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol. Prog. 16, 751–759 (2000). doi:10.1021/bp000090b

    Article  CAS  PubMed  Google Scholar 

  28. Yang, M., Butler, M.: Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol. Bioeng. 68, 370–380 (2000). doi:10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  29. Grammatikos, S.I., Valley, U., Nimtz, M., Conradt, H.S., Wagner, R.: Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol. Prog. 14, 410–419 (1998). doi:10.1021/bp980005o

    Article  CAS  PubMed  Google Scholar 

  30. Elices, M.J., Goldstein, I.J.: Ehrlich ascites tumor cell UDP-Gal:N-acetyl-D-glucosamine beta(1,4)-galactosyltransferase. Purification, characterization, and topography of the acceptor-binding site. J. Biol. Chem. 263, 3354–3362 (1988)

    CAS  PubMed  Google Scholar 

  31. Gonzalez-Noriega, A., Grubb, J.H., Talkad, V., Sly, W.S.: Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol. 85, 839–852 (1980). doi:10.1083/jcb.85.3.839

    Article  CAS  PubMed  Google Scholar 

  32. Chee Furng Wong, D., Tin Kam Wong, K., Tang Goh, L., Kiat Heng, C., Gek Sim Yap, M.: Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol. Bioeng. 89, 164–177 (2005). doi:10.1002/bit.20317

    Article  PubMed  Google Scholar 

  33. Muthing, J., Kemminer, S.E., Conradt, H.S., Sagi, D., Nimtz, M., Karst, U., Peter-Katalinic, J.: Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol. Bioeng. 83, 321–334 (2003). doi:10.1002/bit.10673

    Article  PubMed  Google Scholar 

  34. Butler, M., Christie, A.: Adaptation of mammalian cells to non-ammoniagenic media. Cytotechnology 15, 87–94 (1994). doi:10.1007/BF00762382

    Article  CAS  PubMed  Google Scholar 

  35. Christie, A., Butler, M.: The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol. Bioeng. 64, 298–309 (1999). doi:10.1002/(SICI)1097-0290(19990805)64:3<298::AID-BIT6>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  36. Christie, A., Butler, M.: Glutamine-based dipeptides are utilized in mammalian cell culture by extracellular hydrolysis catalyzed by a specific peptidase. J. Biotechnol. 37, 277–290 (1994). doi:10.1016/0168-1656(94)90134-1

    Article  CAS  PubMed  Google Scholar 

  37. Xu, Y., Cacia, J.: A reversed-phase HPLC assay for plasminogen activators. J. Liquid Chromatogr. Relat. Technol. 23, 1841 (2000). doi:10.1081/JLC-100100455

    Article  CAS  Google Scholar 

  38. Packer, N.H., Lawson, M.A., Jardine, D.R., Redmond, J.W.: A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj. J. 15, 737–747 (1998). doi:10.1023/A:1006983125913

    Article  CAS  PubMed  Google Scholar 

  39. Kondo, A., Suzuki, J., Kuraya, N., Hase, S., Kato, I., Ikenaka, T.: Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric. Biol. Chem. 54, 2169–2170 (1990)

    CAS  PubMed  Google Scholar 

  40. Fournier, I., Marinach, C., Tabet, J.C., Bolbach, G.: Irradiation effects in MALDI, ablation, ion production, and surface modifications. Part II. 2,5-dihydroxybenzoic acid monocrystals. J. Am. Soc. Mass Spectrom. 14, 893–899 (2003). doi:10.1016/S1044-0305(03)00347-7

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, X., Papayannopoulos, I.A.: Matrix with noise reduction additive and disposable target containing the same. Applied biosystems, Framingham (2005)

    Google Scholar 

  42. Mohr, M.D., Bornsen, K.O., Widmer, H.M.: Matrix-assisted laser desorption/ionization mass spectrometry: improved matrix for oligosaccharides. Rapid Commun. Mass Spectrom. 9, 809–814 (1995). doi:10.1002/rcm.1290090919

    Article  CAS  PubMed  Google Scholar 

  43. Lee, Y.C., Lee, B.I., Tomiya, N., Takahashi, N.: Parameterization of contribution of sugar units to elution volumes in reverse-phase HPLC of 2-pyridylaminated oligosaccharides. Anal. Biochem. 188, 259–266 (1990). doi:10.1016/0003-2697(90)90603-7

    Article  CAS  PubMed  Google Scholar 

  44. Tomiya, N., Lee, Y.C., Yoshida, T., Wada, Y., Awaya, J., Kurono, M., Takahashi, N.: Calculated two-dimensional sugar map of pyridylaminated oligosaccharides: elucidation of the jack bean alpha-mannosidase digestion pathway of Man9GlcNAc2. Anal. Biochem. 193, 90–100 (1991). doi:10.1016/0003-2697(91)90047-W

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., Tomiya, N.: Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal. Biochem. 226, 139–146 (1995). doi:10.1006/abio.1995.1201

    Article  CAS  PubMed  Google Scholar 

  46. Tomiya, N., Takahashi, N.: Contribution of component monosaccharides to the coordinates of neutral and sialyl pyridylaminated N-glycans on a two-dimensional sugar map. Anal. Biochem. 264, 204–210 (1998). doi:10.1006/abio.1998.2849

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki, N., Lee, Y.C.: Site-specific N-glycosylation of chicken serum IgG. Glycobiology 14, 275–292 (2004). doi:10.1093/glycob/cwh031

    Article  CAS  PubMed  Google Scholar 

  48. Townsend, R.R., Hardy, M.R., Wong, T.C., Lee, Y.C.: Binding of N-linked bovine fetuin glycopeptides to isolated rabbit hepatocytes: Gal/GalNAc hepatic lectin discrimination between Gal beta(1,4)GlcNAc and Gal beta(1,3)GlcNAc in a triantennary structure. Biochemistry 25, 5716–5725 (1986). doi:10.1021/bi00367a055

    Article  CAS  PubMed  Google Scholar 

  49. Nakano, M., Kakehi, K., Tsai, M.H., Lee, Y.C.: Detailed structural features of glycan chains derived from alpha1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology 14, 431–441 (2004). doi:10.1093/glycob/cwh034

    Article  CAS  PubMed  Google Scholar 

  50. Pfeiffer, G., Schmidt, M., Strube, K.H., Geyer, R.: Carbohydrate structure of recombinant human uterine tissue plasminogen activator expressed in mouse epithelial cells. Eur. J. Biochem. 186, 273–286 (1989). doi:10.1111/j.1432-1033.1989.tb15206.x

    Article  CAS  PubMed  Google Scholar 

  51. Nimtz, M., Noll, G., Paques, E.P., Conradt, H.S.: Carbohydrate structures of a human tissue plasminogen activator variant expressed in recombinant Chinese hamster ovary cells. FEBS Lett. 271, 14–18 (1990). doi:10.1016/0014-5793(90)80361-L

    Article  CAS  PubMed  Google Scholar 

  52. Spellman, M.W., Basa, L.J., Leonard, C.K., Chakel, J.A., O’Connor, J.V., Wilson, S., van Halbeek, H.: Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J. Biol. Chem. 264, 14100–14111 (1989)

    CAS  PubMed  Google Scholar 

  53. Zanghi, J.A., Mendoza, T.P., Knop, R.H., Miller, W.M.: Ammonia inhibits neural cell adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer cells. J. Cell. Physiol. 177, 248–263 (1998). doi:10.1002/(SICI)1097-4652(199811)177:2<248::AID-JCP7>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  54. Demaurex, N., Furuya, W., D’Souza, S., Bonifacino, J.S., Grinstein, S.: Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J. Biol. Chem. 273, 2044–2051 (1998). doi:10.1074/jbc.273.4.2044

    Article  CAS  PubMed  Google Scholar 

  55. Robbins, A.R., Peng, S.S., Marshall, J.L.: Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis. J. Cell Biol. 96, 1064–1071 (1983). doi:10.1083/jcb.96.4.1064

    Article  CAS  PubMed  Google Scholar 

  56. Geuze, H.J., Slot, J.W., Strous, G.J., Hasilik, A., von Figura, K.: Possible pathways for lysosomal enzyme delivery. J. Cell Biol. 101, 2253–2262 (1985). doi:10.1083/jcb.101.6.2253

    Article  CAS  PubMed  Google Scholar 

  57. Schaub, B.E., Berger, B., Berger, E.G., Rohrer, J.: Transition of galactosyltransferase 1 from trans-Golgi cisterna to the trans-Golgi network is signal mediated. Mol. Biol. Cell 17, 5153–5162 (2006). doi:10.1091/mbc.E06-08-0665

    Article  CAS  PubMed  Google Scholar 

  58. Starr, T., Forsten-Williams, K., Storrie, B.: Both post-Golgi and intra-Golgi cycling affect the distribution of the Golgi phosphoprotein GPP130. Traffic 8, 1265–1279 (2007). doi:10.1111/j.1600-0854.2007.00607.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Richard Hassett (t-pa purification refinement) and Ann Slavec (Project management) as well as the lab of Dr. YC Lee for facilities and support. This project was funded by Invitrogen Cell Systems Division, Life Technologies Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Gillmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillmeister, M.P., Tomiya, N., Jacobia, S.J. et al. An HPLC-MALDI MS method for N-glycan analyses using smaller size samples: Application to monitor glycan modulation by medium conditions. Glycoconj J 26, 1135–1149 (2009). https://doi.org/10.1007/s10719-009-9235-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9235-z

Keywords

Navigation