Skip to main content
Log in

Pseudoproteoglycan (pseudoPG) probes that simulate PG macromolecular structure for screening and isolation of PG-binding proteins

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A proteoglycan (PG) monomer is a macromolecule consisting of one or more glycosaminoglycan (GAG) chains attached to a core protein. PGs have signaling roles and modulatory functions in the extracellular matrix and at the cell surface. To elucidate the functions of higher-order PG structures, pseudoPGs that imitate the PG structure were prepared to develop probes and affinity adsorbents. Poly-l-lysine (PLL) or polyacrylamide (PAA) was coupled with various GAGs, then biotinylated, and the remaining amino groups were blocked to obtain the pseudoPG probes, biotinyl PLL (BPL)- or PAA (BPA)-GAGs. Lactoferrin exhibited 30-times higher affinity toward BPL-heparin than the conventional single-strand probe, biotin-hydrazide-heparin. Heparin-PLL was immobilized on a formyl-Sepharose and compared with the Hep-Sepharose in which heparin was directly immobilized to amino-Sepharose. Screening for ligands in normal rat brain revealed several proteins that specifically bound to either of the two adsorbents, indicating that the heparin-binding proteins exhibit specific recognition depending on the higher-order structure of the PG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  1. Iozzo, R.V.: Annu. Rev. Biochem. 67, 609–652 (1998). doi:10.1146/annurev.biochem.67.1.609

    Article  CAS  PubMed  Google Scholar 

  2. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., Zako, M.: Annu. Rev. Biochem. 68, 729–777 (1999). doi:10.1146/annurev.biochem.68.1.729

    Article  CAS  PubMed  Google Scholar 

  3. Langford, J.K., Stanley, M.J., Cao, D., Sanderson, R.D.: J. Biol. Chem. 273(45), 29965–29971 (1998). doi:10.1074/jbc.273.45.29965

    Article  CAS  PubMed  Google Scholar 

  4. Sugahara, K., Mikami, T.: Curr. Opin. Struct. Biol. 17(5), 536–545 (2007). doi:10.1016/j.sbi.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz, N.B., Domowicz, M.: Glycoconj. J. 21(6), 329–341 (2004). doi:10.1023/B:GLYC.0000046278.34016.36

    Article  CAS  PubMed  Google Scholar 

  6. Seno, N., Anno, K., Kondo, K., Nagase, S., Saito, S.: Anal. Biochem. 37(1), 197–202 (1970). doi:10.1016/0003-2697(70)90280-0

    Article  CAS  PubMed  Google Scholar 

  7. Ogawa, H., Ueda, H., Natsume, A., Suzuki, R.: Methods Enzymol 362, 196–209 (2003). doi:10.1016/S0076-6879(03)01013-9

    Article  CAS  PubMed  Google Scholar 

  8. Ito, Y., Seno, N., Matsumoto, I.: J. Biochem. 97(6), 1689–1694 (1985)

    CAS  PubMed  Google Scholar 

  9. Sasaki, H., Hayashi, A., Kitagaki-Ogawa, H., Matsumoto, I., Seno, N.: J. Chromatogr. A 400, 123–132 (1987). doi:10.1016/S0021-9673(01)81605-8

    Article  CAS  Google Scholar 

  10. Matsumoto, I., Kitagaki, H., Akai, Y., Ito, Y., Seno, N.: Anal. Biochem. 116(1), 103–110 (1981). doi:10.1016/0003-2697(81)90329-8

    Article  CAS  PubMed  Google Scholar 

  11. Laemmli, U.K.: Nature 227(5259), 680–685 (1970). doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  12. Saphire, A.C., Bobardt, M.D., Gallay, P.A.: EMBO J 18(23), 6771–6785 (1999). doi:10.1093/emboj/18.23.6771

    Article  CAS  PubMed  Google Scholar 

  13. Paulsson, M., Gouda, I., Larm, O., Ljungh, A.: J. Biomed. Mater. Res. 28(3), 311–317 (1994). doi:10.1002/jbm.820280305

    Article  CAS  PubMed  Google Scholar 

  14. Klein, J., Kraus, M., Ticha, M., Zelezna, B., Jonakova, V., Kocourek, J.: Glycoconj. J. 12(1), 51–54 (1995). doi:10.1007/BF00731868

    Article  CAS  PubMed  Google Scholar 

  15. Suda, Y., Arano, A., Fukui, Y., Koshida, S., Wakao, M., Nishimura, T., Kusumoto, S., Sobel, M.: Bioconjug. Chem. 17(5), 1125–1135 (2006). doi:10.1021/bc0600620

    Article  CAS  PubMed  Google Scholar 

  16. Stewart, A.J., Pichon, C., Meunier, L., Midoux, P., Monsigny, M., Roche, A.C.: Mol. Pharm. 50(6), 1487–1494 (1996)

    CAS  Google Scholar 

  17. Asayama, S., Nogawa, M., Takei, Y., Akaike, T., Maruyama, A.: Bioconjug. Chem. 9(4), 476–481 (1998). doi:10.1021/bc970213m

    Article  CAS  PubMed  Google Scholar 

  18. Asayama, S., Maruyama, A., Akaike, T.: Bioconjug. Chem. 10(2), 246–253 (1999). doi:10.1021/bc980093y

    Article  CAS  PubMed  Google Scholar 

  19. Kresse, H., Hausser, H., Schonherr, E.: Experientia 49(5), 403–416 (1993). doi:10.1007/BF01923585

    Article  CAS  PubMed  Google Scholar 

  20. Tumova, S., Woods, A., Couchman, J.R.: Int. J. Biochem. Cell Biol. 32(3), 269–288 (2000). doi:10.1016/S1357-2725(99)00116-8

    Article  CAS  PubMed  Google Scholar 

  21. Yahara, I., Minami, Y., Miyata, Y.: Ann. N. Y. Acad. Sci. 851, 54–60 (1998). doi:10.1111/j.1749-6632.1998.tb08976.x

    Article  CAS  PubMed  Google Scholar 

  22. Minami, Y., Kawasaki, H., Miyata, Y., Suzuki, K., Yahara, I.: J. Biol. Chem. 266(16), 10099–10103 (1991)

    CAS  PubMed  Google Scholar 

  23. Itoh, H., Tashima, Y.: Int. J. Biochem. 25(2), 157–161 (1993). doi:10.1016/0020-711X(93)90003-W

    Article  CAS  PubMed  Google Scholar 

  24. Huang, T., Deng, H., Wolkoff, A.W., Stockert, R.J.: J. Biol. Chem. 277(40), 37798–37803 (2002). doi:10.1074/jbc.M204786200

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, J., Jin, Z.G., Meoli, D.F., Matoba, T., Berk, B.C.: Circ. Res. 98(6), 811–817 (2006). doi:10.1161/01.RES.0000216405.85080.a6

    Article  CAS  PubMed  Google Scholar 

  26. Li, W., Li, Y., Guan, S., Fan, J., Cheng, C.F., Bright, A.M., Chinn, C., Chen, M., Woodley, D.T.: EMBO J. 26(5), 1221–1233 (2007). doi:10.1038/sj.emboj.7601579

    Article  CAS  PubMed  Google Scholar 

  27. Goldner, F.M., Patrick, J.W.: J. Comp. Neurol. 372(2), 283–293 (1996). doi:10.1002/(SICI)1096-9861(19960819)372:2<283::AID-CNE9>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  28. Saphire, A.C., Bobardt, M.D., Zhang, Z., David, G., Gallay, P.A.: J. Virol. 75(19), 9187–9200 (2001). doi:10.1128/JVI.75.19.9187-9200.2001

    Article  CAS  Google Scholar 

  29. Towers, G.J., Hatziioannou, T., Cowan, S., Goff, S.P., Luban, J., Bieniasz, P.D.: Nat. Med. 9(9), 1138–1143 (2003). doi:10.1038/nm910

    CAS  Google Scholar 

  30. Osmond, R.I., Kett, W.C., Skett, S.E., Coombe, D.R.: Anal. Biochem. 310(2), 199–207 (2002). doi:10.1016/S0003-2697(02)00396-2

    Article  CAS  PubMed  Google Scholar 

  31. Koshida, S., Suda, Y., Arano, A., Sobel, M., Kusumoto, S.: Tetrahedron Lett 42(7), 1293–1296 (2001). doi:10.1016/S0040-4039(00)02277-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-aid for Scientific Research on Priority Areas 15040209 and 17046004 (HO) from the Ministry of Education, Culture, Sports, Science, and Technology and by a Research Grant on HIV/AIDS from the Ministry of Health Labour Sciences Research. We thank K. Ono for editing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruko Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, K., Nakamura, K., Haishima, Y. et al. Pseudoproteoglycan (pseudoPG) probes that simulate PG macromolecular structure for screening and isolation of PG-binding proteins. Glycoconj J 26, 1007–1017 (2009). https://doi.org/10.1007/s10719-008-9220-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9220-y

Keywords

Navigation