Skip to main content
Log in

The evolution of galactose α2,3-sialyltransferase: Cionaintestinalis ST3GAL I/II and Takifugu rubripes ST3GAL II sialylate Galβ1,3GalNAc structures on glycoproteins but not glycolipids

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sialyltransferases are a family of enzymes catalyzing the transfer of sialic acid residues to terminal non-reducing positions of oligosaccharide chains of glycoproteins and glycolipids. Although expression of sialic acid is well documented in animals of the deuterostomian lineage, sialyltransferases have been predominantly described for relatively recent vertebrate lineages such as birds and mammals. This study outlines the characterization of the only sialyltransferase gene found in the tunicate Ciona intestinalis, the first such report of a non-vertebrate deuterostomian sialyltransferase, which has been discussed as a possible orthologue of the common ancestor of galactose α2,3-sialyltransferases. We also report for the first time the characterization of a ST3Gal II gene from the bony fish Takifugu rubripes. We demonstrate that both genes encode functional α2,3-sialyltransferases that are structurally and functionally related to the ST3Gal family of mammalian sialyltransferases. However, characterization of the recombinant, purified forms of both enzymes reveal novel acceptor substrate specificities, with sialylation of the disaccharide Galβ1-3GalNAc and asialofetuin, but not GM1 or GD1b observed. This is in contrast to the mammalian ST3Gal II that predominantly sialylates gangliosides. Taken together the ceramide binding/recognition site previously proposed for the mouse ST3Gal II might represent a unique feature of mammalian ST3Gal II that is missing in the evolutionary more distant fish and tunicate species reported here. This suggests that during the evolution of the ST3Gal II, probably following the separation of the teleosts, a significant shift in substrate specificity enabling the sialylation of gangliosides took place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schauer, R.: Achievements and challenges of sialic acid research. Glycoconjugate J. 17, 485–499 (2000)

    Article  CAS  Google Scholar 

  2. Angata, T., Varki, A.: Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. Crocker, P.R.: Siglecs in innate immunity. Curr. Opin. Pharmacol 5, 431–437 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. Lehmann, F., Tiralongo, E., Tiralongo, J.: Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 63, 1331–1354 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., Delannoy, P.: The human sialyltransferase family. Biochimie 83, 727–737 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Jeanneau, C., Chazalet, V., Auge, C., Soumpasis, D.M., Harduin-Lepers, A., Delannoy, P., Imberty, A., Breton, C.: Structure–function analysis of the human sialyltransferase ST3Gal I: role of N-glycosylation and a novel conserved sialylmotif. J. Biol. Chem. 279, 13461–13468 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Takashima, S., Tsuji, S., Tsujimoto, M.: Characterization of the second type of human β-galactoside α2,6-sialyltransferase (ST6Gal II), which sialylates Galβ1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes. J. Biol. Chem. 277, 45719–45728 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Tsuji, S., Datta, A.K., Paulson, J.C.: Systematic nomenclature for sialyltransferases. Carbohydr. Res. 6, R5–R7 (1996)

    Google Scholar 

  9. Taniguchi, A., Morishima, T., Tsujita, Y., Matsumoto, Y., Matsumoto, K.: Genomic structure, expression, and transcriptional regulation of human Galβ1,3GalNAcα2,3-sialyltransferase gene. Biochem. Biophys. Res. Commun. 300, 570–576 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. Donadio, S., Dubois, C., Fichant, G., Roybon, L., Guillemot, J.C., Breton, C., Ronin, C.: Recognition of cell surface acceptors by two human α-2,6-sialyltransferases produced in CHO cells. Biochimie 85, 311–321 (2003)

    Article  PubMed  CAS  Google Scholar 

  11. Datta, A.K., Paulson, J.C.: Sialylmotifs of sialyltransferases. Indian J. Biochem. Biophys. 34, 157–165 (1997)

    PubMed  CAS  Google Scholar 

  12. Geremia, R.A., Harduinlepers, A., Delannoy, P.: Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action. Glycobiology 7, R5–R7 (1997)

    Article  Google Scholar 

  13. Harduin-Lepers, A., Mollicone, R., Delannoy, P., Oriol, R.: The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15, 805–817 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P., Christoffels, A., Rash, S., Hoon, S., Smit, A., Gelpke, M.D., Roach, J., Oh, T., Ho, I.Y., Wong, M., Detter, C., Verhoef, F., Predki, P., Tay, A., Lucas, S., Richardson, P., Smith, S.F., Clark, M.S., Edwards, Y.J., Doggett, N., Zharkikh, A., Tavtigian, S.V., Pruss, D., Barnstead, M., Evans, C., Baden, H., Powell, J., Glusman, G., Rowen, L., Hood, L., Tan, Y.H., Elgar, G., Hawkins, T., Venkatesh, B., Rokhsar, D., Brenner, S.: Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  PubMed  CAS  Google Scholar 

  16. Thompson, J.D., Higgins, D.G., Gibson, T.J.: The CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., Elofsson, A.: Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673–676 (1997)

    Article  PubMed  CAS  Google Scholar 

  18. Kumar, S., Tamura, K., Nei, M.: MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. Sanchez-Lopez, R., Nicholson, R., Gesnel, M.C., Matrisian, L.M., Breathnach, R.: Structure–function relationships in the collagenase family member transin. J. Biol. Chem. 263, 11892–11899 (1988)

    PubMed  CAS  Google Scholar 

  20. Kono, M., Ohyama, Y., Lee, Y.C., Hamamoto, T., Kojima, N., Tsuji, S.: Mouse β-galactoside α2,3-sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 7, 469–479 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. Datta, A.K., Chammas, R., Paulson, J.C.: Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. J. Biol. Chem. 276, 15200–15207 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Patel, R.Y., Balaji, P.V.: Identification of linkage-specific sequence motifs in sialyltransferases. Glycobiology 16, 108–116 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. Taniguchi, N., Honke, K., Fukuda, M.: Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo (2002)

    Google Scholar 

  24. Lee, Y.C., Kojima, N., Wada, E., Kurosawa, N., Nakaoka, T., Hamamoto, T., Tsuji, S.: Cloning and expression of cDNA for a new type of Galβ1,3GalNAcα2,3-sialyltransferase. J. Biol. Chem. 269, 10028–10033 (1994)

    PubMed  CAS  Google Scholar 

  25. Tsuji, T., Osawa, T.: Carbohydrate structures of bovine submaxillary mucin. Carbohydr. Res. 151, 391–402 (1986)

    Article  PubMed  CAS  Google Scholar 

  26. Kojima, N., Lee, Y.C., Hamamoto, T., Kurosawa, N., Tsuji, S.: Kinetic properties and acceptor substrate preferences of two kinds of Galβ1,3GalNAcα2,3-sialyltransferase from mouse brain. Biochemistry 33, 5772–5776 (1994)

    Article  PubMed  CAS  Google Scholar 

  27. de Vries, T., Srnka, C.A., Palcic, M.M., Swiedler, S.J., van den Eijnden, D.H., Macher, B.A.: Acceptor specificity of different length constructs of human recombinant α1,3/4-fucosyltransferases. Replacement of the stem region and the transmembrane domain of fucosyltransferase V by protein A results in an enzyme with GDP-fucose hydrolyzing activity. J. Biol. Chem. 270, 8712–8722 (1995)

    Article  PubMed  Google Scholar 

  28. Kitagawa, H., Paulson, J.C.: Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J. Biol. Chem. 269, 1394–1401 (1994)

    PubMed  CAS  Google Scholar 

  29. Gillespie, W., Kelm, S., Paulson, J.C.: Cloning and expression of the Galβ1,3GalNAc α2,3-sialyltransferase. J. Biol. Chem. 267, 21004–21010 (1992)

    PubMed  CAS  Google Scholar 

  30. Lee, Y.C., Kurosawa, N., Hamamoto, T., Nakaoka, T., Tsuji, S.: Molecular cloning and expression of Galβ1,3GalNAcα2,3-sialyltransferase from mouse brain. Eur. J. Biochem. 216, 377–385 (1993)

    Article  PubMed  CAS  Google Scholar 

  31. Rearick, J.I., Sadler, J.E., Paulson, J.C., Hill, R.L.: Enzymatic characterization of beta D-galactoside α2-3 sialyltransferase from porcine submaxillary gland. J. Biol. Chem. 254, 4444–4451 (1979)

    PubMed  CAS  Google Scholar 

  32. Legaigneur, P., Breton, C., El Battari, A., Guillemot, J.C., Auge, C., Malissard, M., Berger, E.G., Ronin, C.: Exploring the acceptor substrate recognition of the human β-galactoside α2,6-sialyltransferase. J. Biol. Chem. 276, 21608–21617 (2001)

    Article  PubMed  CAS  Google Scholar 

  33. Freischutz, B., Saito, M., Rahmann, H., Yu, R.K.: Characterization of sialyltransferase-IV activity and its involvement in the c-pathway of brain ganglioside metabolism. J. Neurochem. 64, 385–393 (1995)

    Article  PubMed  CAS  Google Scholar 

  34. Guerardel, Y., Chang, L.Y., Maes, E., Huang, C.J., Khoo, K.H.: Glycomic survey mapping of zebrafish identifies unique sialylation pattern. Glycobiology 16, 244–257 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. Inoue, S., Inoue, Y.: Fish glycoproteins. In: Montreuil, J., Vliegenthart, J.F., Schachter, H. (eds.) Glycoproteins II. Elsevier, Amsterdam, pp. 143–162 (1997)

    Google Scholar 

  36. Asahina, S., Sato, C., Matsuno, M., Matsuda, T., Colley, K., Kitajima, K.: Involvement of the α2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the O-linked glycoproteins in rainbow trout ovary. J. Biochem. (Tokyo) 140, 687–701 (2006)

    CAS  Google Scholar 

  37. Kawamura, K., Nomura, M., Kameda, T., Shimamoto, H., Nakauchi, M.: Self–nonself recognition activity extracted from self-sterile eggs of the ascidian, Ciona intestinalis. Dev. Growth Differ. 33, 139–148 (1991)

    Article  Google Scholar 

  38. Warren, L.: The distribution of sialic acids in nature. Comp. Biochem. Physiol. 10, 153–171 (1963)

    Article  PubMed  CAS  Google Scholar 

  39. Hilbig, R.: Structure related phylogenetic variations in brain gangliosides of vertebrates. Comp. Biochem. Physiol. B 77, 151–160 (1984)

    Article  PubMed  CAS  Google Scholar 

  40. Irwin, L.N.: Phylogeny and ontogeny of vertebrate brain gangliosides. Adv. Exp. Med. Biol. 174, 319–329 (1984)

    PubMed  CAS  Google Scholar 

  41. Toivonen, S., Aitio, O., Renkonen, O.: α2,3-Sialylation of terminal GalNAcβ1-3Gal determinants by ST3Gal II reveals the multifunctionality of the enzyme. The resulting Neu5Acα2-3GalNAc linkage is resistant to sialidases from Newcastle disease virus and Streptococcus pneumoniae. J. Biol. Chem. 276, 37141–37148 (2001)

    Article  PubMed  CAS  Google Scholar 

  42. Green, E.D., Adelt, G., Baenziger, J.U., Wilson, S., Van Halbeek, H.: The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J. Biol. Chem. 263, 18253–18268 (1988)

    PubMed  CAS  Google Scholar 

  43. Spiro, R.G., Bhoyroo, V.D.: Structure of the O-glycosidically linked carbohydrate units of fetuin. J. Biol. Chem. 249, 5704–5717 (1974)

    PubMed  CAS  Google Scholar 

  44. Fournier, T., Medjoubi, N.N., Porquet, D.: Alpha-1-acid glycoprotein. Biochim. Biophys. Acta. 1482, 157–171 (2000)

    PubMed  CAS  Google Scholar 

  45. Wormald, M.R., Rudd, P.M., Harvey, D.J., Chang, S.C., Scragg, I.G., Dwek, R.A.: Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36, 1370–1380 (1997)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

FL gratefully acknowledges the Deutsche Forschungsgemeinschaft (DFG) for the awarding of a Research Fellowship. SK acknowledges the funding by a Sir Allan Sewell Fellowship. MvI thanks the Australian Research Council (ARC) for the award of a Federation Fellowship and the Alexander von Humboldt Stiftung for the award of a von Humboldt Forschungspreis. JT gratefully acknowledges the ARC for the awarding of an Australian Postdoctoral Fellowship. The authors also wish to thank Dr. Milton Kiefel for providing helpful advice. We also wish to acknowledge the Consortium for Functional Glycomics Grant number GM62116 for providing the oligosaccharides used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Tiralongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, F., Kelm, S., Dietz, F. et al. The evolution of galactose α2,3-sialyltransferase: Cionaintestinalis ST3GAL I/II and Takifugu rubripes ST3GAL II sialylate Galβ1,3GalNAc structures on glycoproteins but not glycolipids. Glycoconj J 25, 323–334 (2008). https://doi.org/10.1007/s10719-007-9078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9078-4

Keywords

Navigation