Skip to main content
Log in

Reduced sialylation status in UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE)-deficient mice

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. They are involved in a variety of cellular functions, such as cell adhesion or signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. Previously, we have shown that inactivation of the GNE by gene targeting causes early embryonic lethality in mice, whereas heterozygous GNE-deficient mice are vital. In this study we compared the amount of membrane-bound sialic acids of wildtype mice with those of heterozygous GNE-deficient mice. For that we quantified membrane-bound sialic acid concentration in various organs of wildtype- and heterozygous GNE-deficient mice. We found an organ-specific reduction of membrane-bound sialic acids in heterozygous GNE-deficient mice. The overall reduction was 25%. Additionally, we analyzed transferrin and polysialylated neural cell adhesion molecule (NCAM) by one- or two-dimensional gel electrophoresis. Transferrin-expression was unchanged in heterozygous GNE-deficient mice; however the isoelectric point of transferrin was shifted towards basic pH, indicating a reduced sialylation. Furthermore, the expression of polysialic acids on NCAM was reduced in GNE-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97 (1993)

    Article  PubMed  CAS  Google Scholar 

  2. Traving, C., Schauer, R.: Structure, function and metabolism of sialic acids. Cell. Mol. Life. Sci. 54, 1330 (1998)

    Article  PubMed  CAS  Google Scholar 

  3. Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137 (1998)

    Article  Google Scholar 

  4. Varki, A.: Sialic acids as ligands in recognition phenomena. Faseb. J. 11, 248 (1997)

    PubMed  CAS  Google Scholar 

  5. Finne, J., Finne, U., Deagostini-Bazin, H., Goridis, C.: Occurrence of alpha 2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem. Biophys. Res. Commun. 112, 482 (1983)

    Article  PubMed  CAS  Google Scholar 

  6. Seki, T., Arai, Y.: Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci. Res. 17, 265 (1993)

    Article  PubMed  CAS  Google Scholar 

  7. Szele, F.G., Dowling, J.J., Gonzales, C., Theveniau, M., Rougon, G., Chesselet, M.F.: Pattern of expression of highly polysialylated neural cell adhesion molecule in the developing and adult rat striatum. Neuroscience 60, 133 (1994)

    Article  PubMed  CAS  Google Scholar 

  8. Daniel, L., Durbec, P., Gautherot, E., Rouvier, E., Rougon, G., Figarella-Branger, D.: A nude mice model of human rhabdomyosarcoma lung metastases for evaluating the role of polysialic acids in the metastatic process. Oncogene 20, 997 (2001)

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka, F., Otake, Y., Nakagawa, T., Kawano, Y., Miyahara, R., Li, M., Yanagihara, K., Inui, K., Oyanagi, H., Yamada, T., Nakayama, J., Fujimoto, I., Ikenaka, K., Wada, H.: Prognostic significance of polysialic acid expression in resected non-small cell lung cancer. Cancer. Res. 15, 1666 (2001)

    Google Scholar 

  10. Stäsche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka, L., Moormann, P., Reutter, W.: A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272, 24319 (1997)

    Article  PubMed  Google Scholar 

  11. Hinderlich, S., Stäsche, R., Zeitler, R., Reutter, W.: A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272, 24313 (1997)

    Article  PubMed  CAS  Google Scholar 

  12. Krause, S., Hinderlich, S. Amsili, S., Horstkorte, R., Wiendl, H., Argov, Z., Mitrani-Rosenbaum, S., Lochmüller, H.: Localization of UDP-GlcNAc 2-epimerase/ManNAc (GNE) in the Golgi complex and the nucleus of mammalian cells. Exp. Cell. Res. 304, 365 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. Horstkorte, R., Nöhring, S., Wiechens, N., Schwarzkopf, M., Danker, K., Reutter, W., Lucka, L.: Tissue expression and amino acid sequence of murine UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase. Eur. J. Biochem. 260, 923 (1999)

    Article  PubMed  CAS  Google Scholar 

  14. Horstkorte, R., Nöhring, S., Reutter, W., Effertz, K., Lucka, L., Danker, K.: Proteinkinase C phosphorylates and regulates UDP-N-acetylglucosamine-2-epimerase/N-acetyl-mannosamine kinase. FEBS Lett. 470, 315 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Seppala, R., Lehto, V.P., Gahl, W.A.: Mutations in the human UDP-N-acetyl-glucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 64, 1563 (1999)

    Article  PubMed  CAS  Google Scholar 

  16. Keppler, O.T., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., Pawlita, M.: UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372 (1999)

    Article  PubMed  CAS  Google Scholar 

  17. Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., Olender, T., Barash, M., Shemesh, M., Sadeh, M., Grabov-Nardini, G., Shmilevich, I., Friedmann, A., Karpati, G., Bradley, W.G., Baumbach, L., Lancet, D., Asher, E.B., Beckmann, J.S., Argov, Z., Mitrani-Rosenbaum, S.: The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29, 83–87 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. Schwarzkopf, M., Knobeloch, K.P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., Horak, I., Reutter, W., Horstkorte, R.: Sialylation is essential for early development in mice. Proc. Natl. Acad. Sci. U S A 99, 5267 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. Xin, Y., Lasker, J.M., Rosman, A.S., Lieber, C.S.: Isoelectric focusing/western blotting: a novel and practical method for quantitation of carbohydrate-deficient transferrin in alcoholics. Alcohol Clin. Exp. Res. 15, 814 (1991)

    Article  PubMed  CAS  Google Scholar 

  20. Eckhardt, M., Bukalo, O., Chazal, G., Wang, L., Goridis, C., Schachner, M., Gerardy-Schahn, R., Cremer, H., Dityatev, A.: Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci. 20, 5234 (2000)

    PubMed  CAS  Google Scholar 

  21. Angata, K., Long, J.M., Bukalo, O., Lee, W., Dityatev, A., Wynshaw-Boris, A., Schachner, M., Fukuda, M., Marth, J.D.: Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J. Biol. Chem. 279, 32603 (2004)

    Article  PubMed  CAS  Google Scholar 

  22. Jourdian, G.W., Dean, L., Roseman, S.: The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J. Biol. Chem. 246, 430 (1971)

    PubMed  CAS  Google Scholar 

  23. Löster, K., Kannicht, C.: 2D-electrophoresis: detection of glycosylation and influence an spot pattern. In: Kannicht, C. (ed.) Posttranslational Modifications of Proteins—Tools for Functional Proteomicsm. Humana, Totowa, New Jersey (2002)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. C. Kannicht (Octapharma, Berlin) for help with the two-dimensional gel electrophoresis. This work received financial support by the Deutsche Forschungsgemeinschaft, the Hertie-Stiftung, the Sonnenfeld-Stiftung and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Horstkorte.

Additional information

Daniel Gagiannis and André Orthmann have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagiannis, D., Orthmann, A., Danßmann, I. et al. Reduced sialylation status in UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE)-deficient mice. Glycoconj J 24, 125–130 (2007). https://doi.org/10.1007/s10719-006-9019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-9019-7

Keywords

Navigation