Skip to main content

Advertisement

Log in

Sphingolipids, cholesterol, and HIV-1: A paradigm in viral fusion

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Our previous studies show that the depletion of cholesterol or sphingolipids (raft-associated lipids) from receptor-bearing adherent cell lines blocks HIV-1 entry and HIV-1 Env-mediated membrane fusion. Here we have evaluated the mechanism(s) by which these lipids contribute to the HIV-1 Env-mediated membrane fusion. We report the following: (1) GSL depletion from a suspension T lymphocyte cell line (Sup-T1) reduced subsequent fusion with HIV-1IIIB-expressing cells by 70%. (2) Cholesterol depletion from NIH3T3 cells bearing HIV-1 receptors (NIH3T3CD4R5/NIH3T3CD4X4) did not impair subsequent fusion with HeLa cells expressing the corresponding HIV-1 Envs. In contrast GSL depletion from these targets reduced fusion by 50% suggesting that GSL facilitate fusion in different ways. (3) GSL-deficient GM95 cells bearing high receptors fused with HIV-1 Env-expressing cells at 37°C with kinetics similar to that of GSL + NIH3T3 targets. Based on these observations, we propose that the plasma membrane cholesterol is required to maintain the integrity of receptor pools whereas GSLs are involved in stabilizing the coupling of inter-receptor pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT:

cholera toxin

GSL(s):

glycosphingolipid(s)

SM:

Sphingomyelin

MeβCD:

methyl β-cyclodextrin

HIV-1 Env-gp:

human immunodeficiency virus Type-1 Envelope Glycoprotein

HIV-1:

human immunodeficiency virus Type-1

DRMs:

detergent-resistant membrane domains

Lipid Rafts:

dynamic assemblies of lipids and proteins in the plasma membrane of cells enriched in sphingolipids and cholesterol, which are characterized by virtue of their insolubility in Triton X100 at 4°C also termed as detergent resistant membranes (DRM)

References

  1. Dimitrov, D.S.: How do viruses enter cells? The HIV coreceptors teach us a lesson of complexity. Cell 91, 721–730 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Gallo, S.A., Finnegan, C.M., Viard, M., Raviv, Y., Dimitrov, A., Rawat, S.S., Puri, A., Durell, S., Blumenthal, R.: The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta. 1614, 36–50 (2003)

    CAS  PubMed  Google Scholar 

  3. Rawat, S.S., Viard, M., Gallo, S.A., Rein, A., Blumenthal, R., Puri, A.: Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol. Membr. Biol. 20, 243–254 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Bomsel, M.: Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat. Med. 3, 42–47 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Puri, A., Hug, P., Jernigan, K., Barchi, J., Kim, H.Y., Hamilton, J., Wiels, J., Murray, G.J., Brady, R.O., Blumenthal, R.: The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 95, 14435–14440 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Hug, P., Lin, H.M., Korte, T., Xiao, X., Dimitrov, D.S., Wang, J.M., Puri, A., Blumenthal, R.: Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 74, 6377–6385 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Fantini, J., Hammache, D., Pieroni, G., Yahi, N.: Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion. Glycoconj. J. 17, 199–204 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Hammache, D., Yahi, N., Maresca, M., Pieroni, G., Fantini, J.: Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J. Virol. 73, 5244–5248 (1999)

    CAS  PubMed  Google Scholar 

  9. Hammache, D., Pieroni, G., Yahi, N., Delezay, O., Koch, N., Lafont, H., Tamalet, C., Fantini, J.: Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 273, 7967–7971 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Conboy, J.C., McReynolds, K.D., Gervay-Hague, J., Saavedra, S.S.: Gp120 Binds Cooperatively to Several Biologically Relevant Glycosphingolipids: Quantitative Measurements at Equilibrium by Total Internal Reflection Fluorescence Microscopy. Angew. Chem. Int. 39, 2882–2884 (2000)

    Article  CAS  Google Scholar 

  11. Manes, S., del Real, G., Lacalle, R.A., Lucas, P., Gomez-Mouton, C., Sanchez-Palomino, S., Delgado, R., Alcami, J., Mira, E., Martinez, A.: Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep. 1, 190–196 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H., Hildreth, J.E.: Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 17, 1009–1019 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Viard, M., Parolini, I., Sargiacomo, M., Fecchi, K., Ramoni, C., Ablan, S., Ruscetti, F.W., Wang, J.M., Blumenthal, R.: Role of Cholesterol in Human Immunodeficiency Virus Type 1 Envelope Protein-Mediated Fusion with Host Cells. J. Virol. 76, 11584–11595 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Ono, A., Freed, E.O.: Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 98, 13925–13930 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Guyader, M., Kiyokawa, E., Abrami, L., Turelli, P., Trono, D.: Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J. Virol. 76, 10356–10364 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Campbell, S.M., Crowe, S.M., Mak, J., Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS 16, 2253–2261 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Rawat, S.S., Eaton, J., Gallo, S.A., Martin, T.D., Ablan, S., Ratnayake, S., Viard, M., KewalRamani, V.N., Wang, J.M., Blumenthal, R., Puri, A.: Functional expression of CD4, CXCR4, and CCR5 in glycosphingolipid-deficient mouse melanoma GM95 cells and susceptibility to HIV-1 envelope glycoprotein-triggered membrane fusion. Virology 318, 55–65 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Earl, P.L., Koenig, S., Moss, B.: Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J. Virol. 65, 31–41 (1991)

    CAS  PubMed  Google Scholar 

  19. Broder, C.C., Berger, E.A.: Fusogenic selectivity of the envelope glycoprotein is a major determinant of human immunodeficiency virus type 1 tropism for CD4+ T-cell lines vs. primary macrophages. Proc. Natl. Acad. Sci. USA 92, 9004–9008 (1995)

    CAS  PubMed  Google Scholar 

  20. Garber, M.E., Wei, P., KewalRamani, V.N., Mayall, T.P., Herrmann, C.H., Rice, A.P., Littman, D.R., Jones, K.A.: The interaction between HIV-1 T at and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes. Dev. 12, 3512–3527 (1998)

    CAS  PubMed  Google Scholar 

  21. Smith, S.D., Shatsky, M., Cohen, P.S., Warnke, R., Link, M.P., Glader, B.E.: Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res. 44, 5657–5660 (1984)

    CAS  PubMed  Google Scholar 

  22. Jonak, Z.L., Clark, R.K., Matour, D., Trulli, S., Craig, R., Henri, E., Lee, E.V., Greig, R., Debouck, C.: A human lymphoid recombinant cell line with functional human immunodeficiency virus type 1 envelope. AIDS Res. Hum. Retroviruses 9, 23–32 (1993)

    Article  CAS  PubMed  Google Scholar 

  23. Gallo, S.A., Puri, A., Blumenthal, R.: HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. Biochemistry 40, 12231–12236 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Radin, N.S.: Chemotherapy by slowing glucosphingolipid synthesis. Biochem. Pharmacol. 57, 589–595 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Ablan, S., Rawat, S.S., Blumenthal, R., Puri, A.: Entry of influenza virus into a glycosphingolipid-deficient mouse skin fibroblast cell line. Arch. Virol. 146, 2227–2238 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Viard, M., Parolini, I., Sargiacomo, M., Fecchi, K., Ramoni, C., Ablan, S., Ruscetti, F.W., Wang, J.M., Blumenthal, R.: Role of Cholesterol in Human Immunodeficiency Virus Type 1 Envelope Protein-Mediated Fusion with Host Cells. J. Virol. 76, 11584–11595 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Puri, A., Paternostre, M., Blumenthal, R.: Lipids in viral fusion. Methods Mol. Biol. 199, 61–81 (2002)

    CAS  PubMed  Google Scholar 

  28. Chan, D.C., Kim, P.S.: HIV entry and its inhibition. Cell 93, 681–684 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Dimitrov, D.S.: Cell biology of virus entry. Cell 101, 697–702 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Berger, E.A.: HIV entry and tropism: the chemokine receptor connection. AIDS 11 Suppl A, S3–16 (1997)

    CAS  PubMed  Google Scholar 

  31. Freed, E.O., Delwart, E.L., Buchschacher, G.L.J., Panganiban, A.T.: A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc. Natl. Acad. Sci. USA 89, 70–74 (1992)

    CAS  PubMed  Google Scholar 

  32. Jones, P.L., Korte, T., Blumenthal, R.: Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J. Biol. Chem. 273, 404–409 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Munoz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E., Blumenthal, R.: Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J. Cell Biol. 140, 315–323 (1998)

    Article  CAS  PubMed  Google Scholar 

  34. Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H., Hildreth, J.E.: Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 17, 1009–1019 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. Puri, A., Rawat, S.S., Lin, H.M., Finnegan, C.M., Mikovits, J., Ruscetti, F.W., Blumenthal, R.: An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells. AIDS 18, 849–858 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Singer, I.I., Scott, S., Kawka, D.W., Chin, J., Daugherty, B.L., DeMartino, J.A., DiSalvo, J., Gould, S.L., Lineberger, J.E., Malkowitz, L., Miller, M.D., Mitnaul, L., Siciliano, S.J., Staruch, M.J., Williams, H.R., Zweerink, H.J., Springer, M.S.: CCR5, CXCR4, and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells. J. Virol. 75, 3779–3790 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Fantini, J., Hammache, D., Pieroni, G., Yahi, N.: Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion. Glycoconj. J. 17, 199–204 (2000)

    Article  CAS  PubMed  Google Scholar 

  38. Feigenson, G.W., Buboltz, J.T.: Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Hao, M., Mukherjee, S., Maxfield, F.R.: Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl. Acad. Sci. USA 98, 13072–13077 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Iyengar, S., Hildreth, J.E., Schwartz, D.H.: Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J. Virol. 72, 5251–5255 (1998)

    CAS  PubMed  Google Scholar 

  41. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. Brown, D.A., London, E.: Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14, 111–136 (1998)

    Article  CAS  PubMed  Google Scholar 

  43. Sorice, M., Parolini, I., Sansolini, T., Garofalo, T., Dolo, V., Sargiacomo, M., Tai, T., Peschle, C., Torrisi, M.R., Pavan, A.: Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J. Lipid. Res. 38, 969–980 (1997)

    CAS  PubMed  Google Scholar 

  44. Millan, J., Cerny, J., Horejsi, V., Alonso, M.A.: CD4 segregates into specific detergent-resistant T-cell membrane microdomains. Tissue Antigens. 53, 33–40 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, S.S., Viard, M., Gallo, S.A. et al. Sphingolipids, cholesterol, and HIV-1: A paradigm in viral fusion. Glycoconj J 23, 189–197 (2006). https://doi.org/10.1007/s10719-006-7924-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-7924-4

Keywords

Navigation