Skip to main content
Log in

Molecular basis for polysialylation: A novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the α2,8-polysialyltransferases is essential for polysialylation

  • Original Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

To determine the molecular basis of eukaryotic polysialylation, the function of a structurally unique polybasic motif of 32 amino acids (pI∼12) in the polysialyltransferases (polySTs), ST8Sia II (STX and ST8Sia IV (PST) was investigated. This motif, designated the “polysialyltransferase domain” (PSTD), is immediately upstream of the sialylmotif S (SM-S). PolyST activity was lost in COS-1 mutants in which the entire PSTD in ST8Sia IV was deleted, or in mutants in which 10 and 15 amino acids in either the N- or C- terminus of PSTD were deleted. Site-directed mutagenesis showed that Ile275, Lys276 and Arg277 in the C-terminus of PSTD in ST8Sia IV, which is contiguous with the N-terminus of sialylmotif-S, were essential for polysialylation. Arg252 in the N-terminus segment of the PSTD was also required, as was the overall positive charge. Thus, multiple domains in the polySTs can influence their activity. Immunofluorescent microscopy showed that the mutated proteins were folded correctly, based on their Golgi localization. The structural distinctness of the conserved PSTD in the polySTs, and its absence in the mono- oligoSTs, suggests that it is a “polymerization domain” that distinguishes a polyST from a monosialyltransferases. We postulate that the electrostatic interaction between the polybasic PSTD and the polyanionic polySia chains may function to tether nascent polySia chains to the enzyme, thus facilitating the processive addition of new Sia residues to the non-reducing end of the growing chain. In accord with this hypothesis, the polyanion heparin was shown to inhibit recombinant human ST8Sia II and ST8Sia IV at 10 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Sia:

sialic acid

polySia:

polysialic acids

N-CAM:

neural cell adhesion molecules

DP:

degree of polymerization

ST8Sia II (STX):

ST8 α-N-acetylneuraminide α-2,8-sialyltransferase II

ST8Sia IV (PST):

ST8 α-N-acetylneuraminide α-2,8-sialyltransferase IV

PolySTs:

polysialyltransferases

Endo-N:

Endo-N-acylneuraminidase

References

  1. Troy II, F.A.: Polysialic acid in molecular medicine, Encyclopedia Biol. Chem. 3, 407–14 (2004)

    CAS  Google Scholar 

  2. Troy II, F.A.: Sialobiology and the polysialic acid glycotope: occurrence, structure, function, synthesis and glycopathology. In Biology of the Sialic Acids, edited by Rosenberg A., (Plennum Press, New York, 1995), pp. 95–144

    Google Scholar 

  3. Finne, J.: Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain, J. Biol. Chem. 257, 11966–970 (1982)

    PubMed  CAS  Google Scholar 

  4. Rothbard, J.B., Brackenbury, R., Cunningham, B.A., Edelman, G.M.: Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains, J. Biol. Chem. 257, 11064–69 (1982)

    PubMed  CAS  Google Scholar 

  5. Kudo, M., Kitajima, K., Inoue, S., Shiokawa, K., Morris, H.R., Dell, A., Inoue, Y.: Characterization of the major core structures of the alpha2—>8-linked polysialic acid-containing glycan chains present in neural cell adhesion molecule in embryonic chick brains, J. Biol. Chem. 271, 32667–77 (1996)

    Article  PubMed  CAS  Google Scholar 

  6. McCoy, R.D., Vimr, E., Troy II, F.A.: CMP-Neu5Ac:poly-α-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules, J. Biol. Chem. 260, 12695–99 (1985)

    PubMed  CAS  Google Scholar 

  7. Kitazume, S., Kitajima, K., Inoue, S., Inoue, Y., Troy II, F.A.: Developmental expression of trout egg polysialoglycoproteins and the prerequisite α2,6-, and α2,8-sialyl and α2,8-polysialyltransferase activities required for their synthesis during oogenesis, J. Biol. Chem. 269, 10330–40 (1994)

    PubMed  CAS  Google Scholar 

  8. Kojima, N., Tachida, Y., Yoshida, Y., Tsuji, S.: Characterization of mouse ST8Sia II (SIA8SIA II) as a neural cell adhesion molecule-specific polysialic acid synthase. Requirement of core alpha1,6-linked fucose and a polypeptide chain for polysialylation, J. Biol. Chem. 271, 19457–63 (1996)

    Article  PubMed  CAS  Google Scholar 

  9. Kitazume-Kawaguchi, S., Kabata, S., Arita, M.: Differential biosynthesis of polysialic or disialic acid structure by ST8Sia II and ST8Sia IV, J. Biol. Chem. 276, 15696–703 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Sevigny, M.B., Ye, J., Kitazume-Kawaguchi, S., Troy II, F.A.: Developmental expression and characterization of the alpha2,8-polysialyltransferase activity in embryonic chick brain, Glycobiology 8, 857–67 (1998)

    Article  PubMed  CAS  Google Scholar 

  11. Kojima, N., Yoshida, Y., Tsuji, S.: A developmentally regulated member of the sialyltransferase family (ST8Sia II, STX) is a polysialic acid synthase., FEBS Lett. 373, 119–22 (1995)

    Article  PubMed  CAS  Google Scholar 

  12. Eckhardt, M., Muhlenhoff, M., Bethe, A., Koopman, J., Frosch, M., Gerardy-Schahn, R.: Molecular characterization of eukaryotic polysialyltransferase-1., Nature 373, 715–18 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. Scheidegger, E.P., Sternberg, L.R., Roth, J., Lowe, J.B.: A human STX cDNA confers polysialic acid expression in mammalian cells, J. Biol. Chem. 270, 22685–88 (1995)

    Article  PubMed  CAS  Google Scholar 

  14. Nakayama, J., Fukuda, M.N., Fredette, B., Ranscht, B., Fukuda, M.: Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain, Proc. Natl. Acad. Sci. U.S.A. 92, 7031–35 (1995)

    Article  PubMed  CAS  Google Scholar 

  15. Vimr, E., McCoy, R.D., Vollger, H.F., Wilkison, N.C., Troy II, F.A.: Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes, Proc. Natl. Acad. Sci. USA. 81, 1971–75 (1994)

    Article  Google Scholar 

  16. Livingston, B.D., Jacobs, J.L., Glick, M.C., Troy II, F.A.: Extended polysialic acid chains (n > 55) in glycoproteins from human neuroblastoma cells, J. Biol. Chem. 263, 9443–48 (1988)

    Google Scholar 

  17. Nakata, D., Troy II, F.A.: Degree of polymerization (DP) of polysialic acid (polySia) on neural cell adhesion molecules: Development and application of a new strategy to accurately determine the DP of polySia chains on N-CAM, J. Biol. Chem. 280, 38305–316 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Close, B.E., Colley, K.J.: In vivo autopolysialylation and localization of the polysialyltransferases PST and STX, J. Biol. Chem. 273, 34586–93 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. Drickamer, K.: A conserved disulphide bond in sialyltransferases., Glycobiology 3, 2–3 (1993)

    PubMed  CAS  Google Scholar 

  20. Sevigny, M.B., Zhang, L., Hatfield, S.D., Troy II, F.A.: Biochemical studies to elucidate the molecular mechanisms of α2,8-linked polysialylation, In Sialobiology and other novel forms of glycosylation, edited by Inoue I., Lee Y.C. Troy II F.A., (Gakushin Publishing Company, Osaka, Japan, 1999)

    Google Scholar 

  21. Wen, D.X., Livingston, B.D., Medzihradszky, K.F., Kelm, S., Burlingame, A.L., Paulson, J.C.: Primary structure of Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family, J. Biol. Chem. 267, 21011–19 (1992)

    PubMed  CAS  Google Scholar 

  22. Datta, A.K., Paulson, J.C.: The sialyltransferase “sialylmotif” participates in binding the donor substrate CMP-NeuAc, J. Biol. Chem. 270, 1497–1500 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Datta, A.K., Sinha, A., Paulson, J.C.: Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates, J. Biol. Chem. 273, 9608–14 (1998)

    Article  PubMed  CAS  Google Scholar 

  24. Geremia, R.A., Harduin-Lepers, A., Delannoy, P.: Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action, Glycobiology 7, v-xi (1997)

    Google Scholar 

  25. Jeanneau, C., Chazalet, V., Augá, C., Soumpasis, D.M., Harduin-Lepers, A., Delannoy, P., Imberty, A., Breton, C.: Structure-function analysis of the human sialyltransferase ST3Gal I: role of n-glycosylation and a novel conserved sialylmotif, J. Biol. Chem. 279, 13461–68 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. Patel, R.Y., Balaji, P.V.: Identification of linkage-specific sequence motifs in sialyltransferases., Glycobiology in press (2005)

  27. Angata, K., Chan, D., Thibault, J., Fukuda, M.: Molecular dissection of the ST8Sia IV polysialyltransferase. Distinct domains are required for neural cell adhesion molecule recognition and polysialylation, J. Biol. Chem. 279, 25883–90 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. Close, B.E., Mendiratta, S.S., Geiger, K.M., Broom, L.J., Ho, L.L., Colley, K.J.: The minimal structural domains required for neural cell adhesion molecule polysialylation by PST/ST8Sia IV and STX/ST8Sia II, J. Biol. Chem. 278, 30796–30805 (2003)

    Article  PubMed  CAS  Google Scholar 

  29. Mendiratta, S.S., Sekulic, N., Lavie, A., Colley, K.J.: Specific Amino Acids in the First Fibronectin Type III Repeat of the Neural Cell Adhesion Molecule Play a Role in Its Recognition and Polysialylation by the Polysialyltransferase ST8Sia IV/PST, J. Biol. Chem. 280, 32340–48 (2005)

    Article  PubMed  CAS  Google Scholar 

  30. Hallenbeck, P.C., Vimr, E.R., Yu, F., Bassler, B., Troy, F.A.: Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-α-2,8-sialosyl carbohydrate units, J. Biol. Chem. 262, 3553–61 (1987)

    PubMed  CAS  Google Scholar 

  31. Ye, J., Kitajima, K., Inoue, Y., Inoue, S., Troy, F.A. II: Identification of polysialic acids in glycoconjugates, Methods. Enzymol. 230, 460–84 (1994)

    Article  PubMed  CAS  Google Scholar 

  32. Sasaki, K., Kurata, K., Kojima, N., Kurosawa, N., Ohta, S., Hanai, N., Tsuji, S., Nishi, T.: Expression cloning of a GM3-specific alpha-2,8-sialyltransferase (GD3 synthase), J. Biol. Chem. 269, 15950–56 (1994)

    PubMed  CAS  Google Scholar 

  33. Nakayama, J., Fukuda, M.N., Hirabayashi, Y., Kanamori, A., Sasaki, K., Nishi, T., Fukuda, M.: Expression cloning of a human GT3 synthase. GD3 AND GT3 are synthesized by a single enzyme, J. Biol. Chem. 271, 3684–91 (1996)

    Article  PubMed  CAS  Google Scholar 

  34. Angata, K., Suzuki, M., McAuliffe, J., Ding, Y., Hindsgaul, O., Fukuda, M.: Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three distinct alpha 2,8-sialyltransferases, ST8Sia IV (PST), ST8Sia II (STX), and ST8Sia III, J. Biol. Chem. 275, 18594–18601 (2000)

    Article  PubMed  CAS  Google Scholar 

  35. Kono, M., Yoshida, Y., Kojima, N., Tsuji, S.: Molecular cloning and expression of a fifth type of alpha2,8-sialyltransferase (ST8Sia V). Its substrate specificity is similar to that of SAT-V/III, which synthesize GD1c, GT1a, GQ1b and GT3, J. Biol. Chem. 271, 29366–71 (1996)

    Article  PubMed  CAS  Google Scholar 

  36. Harduin-Lepers, A., Mollicone, R., Delannoy, P., Oriol, R.: The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach, Glycobiology 15, 805–17 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. Hebert, D.N., Garman, S.C., Molinari, M.: The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags, Trends. Cell. Biol. 15, 364–370 (2005)

    Article  PubMed  CAS  Google Scholar 

  38. Borsig, L., Wong, R., Feramisco, J., Nadeau, D.R., Varki, N.M., Varki, A.: Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis, Proc. Natl. Acad. Sci. USA. 98, 3352–57 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. Varki, N.M., Varki, A.: Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans, Semin. Thromb. Hemost. 28, 53–66 (2002)

    Article  PubMed  CAS  Google Scholar 

  40. Angata, T., Kitazume, S., Terada, T., Kitajima, K., Inoue, S., Troy, F.A. II, Inoue, Y.: Identification, characterization, and developmental expression of a novel alpha 2—>8-KDN-transferase which terminates elongation of α2–>8-linked oligo-polysialic acid chain synthesis in trout egg polysialoglycoproteins., Glycoconj. J. 11, 493–99 (1994)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic A. Troy II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakata, D., Zhang, L. & Troy, F.A. Molecular basis for polysialylation: A novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the α2,8-polysialyltransferases is essential for polysialylation. Glycoconj J 23, 423–436 (2006). https://doi.org/10.1007/s10719-006-6356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-6356-5

Keywords

Navigation