Skip to main content
Log in

Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells:Augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content

  • Original Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

GD1a was previously shown responsible for regulating cell motility, cellular adhesiveness to vitronectin, phosphorylation of c-Met and metastatic ability of mouse FBJ osteosarcoma cells. To determine the particular molecules regulated by GD1a, FBJ cells were assessed for tumor-related gene expression by semi-quantitative RT-PCR. Caveolin-1 and stromal interaction molecule 1 (Stim1) expression in FBJ-S1 cells, rich in GD1a, were found to be 6 and 4 times as much, respectively, than in FBJ-LL cells devoid of GD1a. Enhanced production of caveolin-1 in protein was confirmed by Western blotting. A low-metastatic FBJ-LL cell variant, having high GD1a expression through β1-4GalNAcT-1 (GM2/GD2 synthase) cDNA transfection (Hyuga S, et al, Int J Cancer 83: 685-91, 1999), showed enhanced production of caveolin-1 and Stim1 in mRNA and protein, compared to mock-transfectant M5. Incubation of FBJ-M5 cells with exogenous GD1a augmented the expression of caveolin-1 in mRNA and protein and Stim1 in mRNA as well. Treatment of FBJ-S1 with fumonisin B1, an inhibitor of N-acylsphinganine synthesis, for 15 days caused the complete depletion of gangliosides and suppressed the expression of caveolin-1 and Stim1. St3gal5 siRNA transfected cells showed decreased expression of caveolin-1 and Stim1 mRNA, as well as St3gal5 mRNA. These findings clearly indicate ganglioside GD1a to be involved in the regulation of the transformation suppressor genes, caveolin-1 and Stim1. Moreover, treatment with GD1a of mouse melanoma B16 cells and human hepatoma HepG2 cells brought about elevated expression of caveolin-1 and Stim1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GD1a:

Neu5Acα3Galβ3GalNAcβ4(Neu5Acα3)Galβ4GlcCer

GD3:

Neu5Acα8Neu5Acα3Galβ4GlcCer

Gg3:

GalNAcβ4Galβ4 Glc

GM1:

Galβ3GalNAcβ4(Neu5Acα3)Galβ4GlcCer

GM1b:

Neu5Acα3Galβ3GalNAcβ4Galβ4GlcCer

GM3:

Neu5Acα3Galβ4GlcCer

GT1b:

Neu5Acα3Galβ3GalNAcβ4(Neu-5Acα8Neu5Acα3)Galβ4GlcCer

GM2/GD2 synthase:

UDP-N-acetyl-α-D-galactosamine: (N-acetylneuraminyl)-galactosylglucosylceramide-β-1,4-N-acetylgalactosaminyltransferase

HPTLC:

high performance thin layer chromatography

PCR:

polymerase chain reaction

D-PDMP:

D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

St3gal5:

CMP-NeuAc:lactosylceramide alpha-2,3-sialyltransferase

References

  1. Hyuga, S., Yamagata, S., Tai, T., Yamagata, T.: Inhibition of highly metastatic FBJ-LL cell migration by ganglioside GD1a highly expressed in poorly metastatic FBJ-S1 cells. Biochem. Biophys. Res. Commun. 231, 340–43 (1997)

    Article  PubMed  CAS  Google Scholar 

  2. Hyuga, S., Kawasaki, N., Ohta, M., Shibayama, R., Kawanishi, T., Yamagata, S., Yamagata, T., Hayakawa, T.: Ganglioside GD1a inhibits HGF-induced motility and scattering of cancer cells through suppression of tyrosine-phosphorylation of c-Met. Int. J. Cancer 94, 328–34 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Hyuga, S., Yamagata, S., Takatsu, Y., Hyua, M., Nakanishi, H., Furukawa, K., Yamagata, T.: Suppression of FBJ-LL cell adhesion to vitronectin by ganglioside GD1a and loss of metastatic capacity. Int. J. Cancer 83, 685–91 (1999)

    Article  PubMed  CAS  Google Scholar 

  4. Glenney, J.R.: Tyrosine phosphorylation of a 22,kD protein is correlated with transformation with Rous sarcoma virus. J. Biol. Chem. 264, 20163–166 (1989)

    PubMed  CAS  Google Scholar 

  5. Glenney, J.R., Zokas, L.: Novel tyrosine kinase substrates from Rous sarcoma virus transformed cells are present in the membrane cytoskeleton. J. Cell Biol. 108, 2401–08 (1989)

    Article  PubMed  CAS  Google Scholar 

  6. Glenney, J.R.: The sequence of human caveolin reveals identity with VIP 21, a component of transport vesicles. FEBS Lett. 314, 45–48 (1992)

    Article  PubMed  CAS  Google Scholar 

  7. Glenney, J.R., Soppet, D.: Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in RSV-transformed fibroblasts. Proc. Natl. Acad. Sci. USA. 89, 10517–21 (1992)

    Article  PubMed  CAS  Google Scholar 

  8. Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y., Glenney, J.R., Anderson, R.G.W.: Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–82 (1992)

    Article  PubMed  CAS  Google Scholar 

  9. Scherer, P.E., Lewis, R.Y., Volonte, D., Engelman, J.A., Galbiati, F., Couet, J., Kohtz, D.S., van Donselaar, E., Peters, P., Lisanti, M.P.: Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272, 29337–346 (1997)

    Article  PubMed  CAS  Google Scholar 

  10. Scherer, P.E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H.F., Lisanti, M.P.: Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA. 93, 131–35 (1996)

    Article  PubMed  CAS  Google Scholar 

  11. Gargalovic, P., Dory, L.: Caveolin-1 and Caveolin-2 expression in mouse macrophages. J. Biol. Chem. 276, 26164–170 (2001)

    Article  PubMed  CAS  Google Scholar 

  12. Tang, Z.P., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Kohtz, D.S., Nishimoto, I., Lodish, H.F., Lisanti, M.P.: Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255–61 (1996)

    Article  PubMed  CAS  Google Scholar 

  13. Parton, R.G., Way, M., Zorzi, N., Stang, E.: Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136, 137–54 (1997)

    Article  PubMed  CAS  Google Scholar 

  14. Parton, R.G.: Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–48 (1996)

    Article  PubMed  CAS  Google Scholar 

  15. Harder, T., Simons, K.: Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–42 (1997)

    Article  PubMed  CAS  Google Scholar 

  16. Hooper, N.M.: Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16, 145–56 (1999)

    Article  PubMed  CAS  Google Scholar 

  17. van Deurs, B., Roepstorff, K., Hommelgaard, A.M., Svig, K.: Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13, 92–100 (2003)

    Article  PubMed  Google Scholar 

  18. Okamoto, T., Schlegel, A., Scherer, P.E., Lisanti, M.P.: Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–22 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., Lisanti, M.P.: Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19, 7289–7304 (1999)

    PubMed  CAS  Google Scholar 

  20. Krajewska, W.M., Masowska, I.: Caveolins: structure and function in signal transduction. Cell Mol. Biol. Lett. 9, 195–220 (2004)

    PubMed  CAS  Google Scholar 

  21. Berven, L.A., Willard, F.S., Crouch, M.F.: Role of the P70S6K pathway in regulation of the actin cytoskeleton and cell migration. Exp. Cell Res. 296, 183–95 (2004)

    Article  PubMed  CAS  Google Scholar 

  22. Navarro, A., Anad-Apte, B., Parat, M.O.: A role for caveolae in cell migration. FASEB J. 18, 1801–11 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. Koleske, A.J., Baltimore, D., Lisanti, M.P.: Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA. 92, 1381–85 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. Razani, B., Engelman, J.A., Wang, X.B., Schubert, W., Zhang, X.Z., Marks, C.B., Macaluso, F., Russell, R.G., Li, M., Pestell, R.G., Di Vizio, D., Hou, H,Jr., Kneitz, B., Lagaud, G., George, J., Christ, G., Edelmann, W., Lisanti, M.P.: Caveolin-1 Null Mice Are Viable but Show Evidence of Hyperproliferative and Vascular Abnormalities. J. Biol. Chem. 276, 38121–138 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Engelman, J.A., Wykoff, C.C., Yasuhara, S., Song, K.S., Okamoto, T., Lisanti, M.P.: Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272, 16374–381 (1997)

    Article  PubMed  CAS  Google Scholar 

  26. Lee, S.W., Reimer, C.L., Oh, P., Campbell, D.B., Schnitzer, J.E.: Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391–97 (1998)

    Article  PubMed  CAS  Google Scholar 

  27. Williams, T.M., Medina, F., Badano, I., Hazan, R.B., Hutchinson, J., Muller, W.J., Chopra, N.G., Scherer, P.E., Pestell, R.G., Lisanti, M.P.: Caveolin-1 Gene Disruption Promotes Mammary Tumorigenesis and Dramatically Enhances Lung Metastasis in Vivo: Role of cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J. Biol. Chem. 279, 51630–646 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. Parker, N.J., Begley, C.G., Smith, P.J., Fox, R.M.: Molecular cloning of a novel human gene (D11S4896E) at chromosomal region11p15.5. Genomic 37, 253–56 (1996)

    Article  CAS  Google Scholar 

  29. Williams, R.T., Senior, P.V., Van Stekelenburg, L., Layton, J.E., Smith, P.J., Dziadek, M.A.: Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim. Biophys. Acta. 1596, 131–37 (2002)

    PubMed  CAS  Google Scholar 

  30. Manji, S.S., Parker, N.J., Williams, R.T., van Stekelenburg, L., Pearson, R.B., Dziadek, M., Smith. P.J.: STIM1: a novel phosphoprotein located at the cell surface. Biochim. Biophys. Acta. 1481, 147–55 (2000)

    PubMed  CAS  Google Scholar 

  31. Overall, M.L., Parker, N.J., Scarcella, D.L., Smith, P.J., Dziadek, M.: Murine Stim1 maps to distal chromosome 7 and is not imprinted. Mamm. Genome. 9, 657–59 (1998)

    Article  PubMed  CAS  Google Scholar 

  32. Sabbioni, S., Barbanti-Brodano, G., Croce, C.M., Negrini, M.: GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res. 57, 4493–97 (1997)

    PubMed  CAS  Google Scholar 

  33. Suyama, E., Wadhwa, R., Kaur, K., Miyagishi, M., Kaul, S.C., Kawasaki, H., Taira, K.: Identification of Metastasis-related Genes in a Mouse Model Using a Library of Randomized Ribozymes. J. Biol. Chem. 279, 38083–086 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. Liou, J., Kim, M.L., Heo, W.D., Jones, J.T., Myers, J.W., Ferrell, J.E.,Jr, Meyer, T.: STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggeed Ca2+ influx. Current Biology 15, 1235–41 (2005)

    Article  PubMed  CAS  Google Scholar 

  35. Roos, J., DiGregorio, P.J., Yeromin, A.V., Ohlsen, K., Lioudyno, A., Zhang, S., Safrina, O., Kozak, J.A., Wagner, S.L., Cahalan, M.D., Velicelebi, G., Stauderman, K.A.: STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–45 (2005)

    Article  PubMed  CAS  Google Scholar 

  36. Yamagata, S., Miwa, M., Tanaka, K., Yamagata, T.: FBJ virus-induced osteosarcoma has type V collagen consisting of A, B and C-like chains in addition to type I collagen. Biochem. Biophys. Res. Commun. 105, 1208–14 (1982)

    Article  PubMed  CAS  Google Scholar 

  37. Yamagata, S., Tanaka, R., Ito, Y., Shimizu, S.: Gelatinases of murine metastatic tumor cells. Biochem. Biophys. Res. Commun. 158, 228–34 (1989)

    Article  PubMed  CAS  Google Scholar 

  38. Kasuya, M.C.Z., Wang, L.X., Lee, Y.C., Mitsuki, M., Nakajima, H., Miura, Y., Sato, T., Hatanaka, K., Yamagata, S., Yamagata, T.: Azido glycoside primer: A versatile building block for the biocombinatorial synthesis of glycosphingolipid analogues. Carbohydr. Res. 329, 755–63 (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Galbiati, F., Volont, D., Engelman, J.A., Watanabe, G., Burk, R., Pestell, R.G., Lisanti, M.P.: Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17, 6633–48 (1998)

    Article  PubMed  CAS  Google Scholar 

  40. Pito, M., Brunner, J., Ferraretto, A., Ravasi, D., Palestini, P., Masserini, M.: Use of photoactivable GM1 ganglioside analogue to assess lipid distribution in caveolae bilayer. Glycoconj. J. 17, 215–22 (2000)

    Article  Google Scholar 

  41. Mutoh, T., Tokuda, A., Inokuchi, J., Kuriyama, M.: Glucosylceramide Synthase Inhibitor Inhibits the Action of Nerve Growth Factor in PC12 Cells. J. Biol. Chem. 273, 26001–007 (1998)

    Article  PubMed  CAS  Google Scholar 

  42. Meivar-Levy, Futerman, A.H.: Up-regulation of Neutral Glycosphingolipid Synthesis upon Long Term Inhibition of Ceramide Synthesis by Fumonisin B1. J. Biol. Chem. 274, 4607–12 (1999)

    Article  PubMed  CAS  Google Scholar 

  43. Prinetti, A., Prioni, S., Chigorno, V., Karagogeos, D., Tettamanti, G., Sonnino, S.: Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J. Neurochem. 78, 1162–67 (2001)

    Article  PubMed  CAS  Google Scholar 

  44. Kasahara, K., Watanabe, K., Takeuchi, K., Kaneko, H., Oohira, A., Yamamoto, T., Sanai, Y.: Involvement of Gangliosides in Glycosylphosphatidylinositol-anchored Neuronal Cell Adhesion Molecule TAG-1 Signaling in Lipid Rafts. J. Biol. Chem. 275, 34701–709 (2000)

    Article  PubMed  CAS  Google Scholar 

  45. Fra, A.M., Masserini, M., Palestini, P., Sonnino, S., Simons, K.: A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Lett. 375, 11–14 (1995)

    Article  PubMed  CAS  Google Scholar 

  46. Chigorno, V., Palestini, P., Sciannamblo, M., Dolo, V., Pavan, A., Tettamanti, G., Sonnino, S.: Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur. J. Biochem. 267, 4187–97 (2000)

    Article  PubMed  CAS  Google Scholar 

  47. Iwabuchi, K., Handa, L., Hakomori, S.: Separation of “Glycosphingolipid Signaling Domain” from Caveolin-containing Membrane Fraction in Mouse Melanoma B16 Cells and Its Role in Cell Adhesion Coupled with Signaling. J. Biol. Chem. 273, 33766–776 (1998)

    Article  PubMed  CAS  Google Scholar 

  48. Ito, M., Yamagata, T.: Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. J. Biol. Chem. 264, 9510–19 (1989)

    PubMed  CAS  Google Scholar 

  49. Wang, X.Q., Sun, P., Paller, A.S.: Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J. Biol. Chem. 277, 47028–034 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. Li, R., Liu,Y., Ladisch, S.: Enhancement of epidermal growth factor Signaling and activation of Src kinase by gangliosides. J. Biol. Chem. 276, 42782–792 (2001)

    Article  PubMed  CAS  Google Scholar 

  51. Li, R., Liu,Y., Ladisch, S.: Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J. Biol. Chem. 279, 36481–489 (2004)

    Article  PubMed  Google Scholar 

  52. Lin, M., DiVito, M.M., Merajver, S.D., Boyanapall, I.M., van Golen, K.L.: Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol. Cancer 4, 21 doi:101186/1476-4598-4-21 (2005)

    Article  PubMed  Google Scholar 

  53. Higashi, H., Yamagata, T.: Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme. J. Biol. Chem. 267, 9839–43 (1992)

    PubMed  CAS  Google Scholar 

  54. Higashi, H., Yoshida, S., Sato, K., Yamagata, T.: Interaction of ganglioside with specific peptide sequences as a mechanism for the modulation of calmodulin-dependent enzymes. J. Biochem. (Tokyo) 120, 66–73 (1996)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Yamagata.

Additional information

Li Wang and Shizuka Takaku are equal contributors to the present work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Takaku, S., Wang, P. et al. Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells:Augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J 23, 303–315 (2006). https://doi.org/10.1007/s10719-006-5742-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-5742-3

Keywords

Navigation