Skip to main content

Advertisement

Log in

Purification and characterization of a soluble recombinant human ST6Gal I functionally expressed in Escherichia coli

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A soluble and active form of recombinant human ST6Gal I was expressed in Escherichia coli. The gene encoding the soluble form of ST6Gal I lacking the membrane and cytosolic regions was introduced into a bacterial expression vector, pMAL-p2X, fused in frame with a maltose-binding protein (MBP) tag. Low-temperature cultivation at 13C during IPTG-induction significantly improved both solubility and MBP-tagging of the recombinant enzyme expressed in bacteria. The supernatant prepared by disruption of the cells demonstrated sialic acid transfer activity to both an oligosaccharide and a glycoprotein, asialofetuin, indicating that the enzyme expressed in bacteria is soluble and active. The MBP-tagged enzyme was efficiently purified by a combination of cation-exchange column and amylase-conjugated agarose column chromatography. The purified recombinant enzyme exerted enzymatic activity even in the absence of detergents in the reaction mixture. Acceptor substrate specificity of the enzyme was marginally different from that of rat liver ST6Gal I. These observations suggest that membrane and cytosolic regions of ST6Gal I may affect the properties of the enzyme. The purified recombinant enzyme was applied to convert desialylated fetuin to resialylated fetuin. Lectin blotting demonstrated that resialylated fetuin possesses a single Neu5Ac α 2-6 residue. The resialylated fetuin efficiently blocked hemagglutination induced by influenza virus strain A/Memphis/1/71 (H3N2), indicating that resialylated carbohydrate chains on the protein are so active as to competitively inhibit virus-receptor interaction. In conclusion, soluble recombinant ST6Gal I obtained using our bacterial expression system is a valuable tool to investigate the molecular mechanisms of biological and pathological interactions mediated via carbohydrates. Published in 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varki A, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3, 97–130 (1993).

    CAS  PubMed  Google Scholar 

  2. Hakomori S-I, Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions, J Biol Chem 265, 18713–6 (1990).

    CAS  PubMed  Google Scholar 

  3. Suzuki Y, Gangliosides as influenza virus receptors. Variation of influenza viruses and their recognition of the receptor sialo-sugar chains, Prog Lipid Res 33, 429–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki Y, Nakao T, Ito T, Watanabe N, Toda Y, Xu G, Suzuki T, Kobayashi T, Kimura Y, Yamada A, Sugawara K, Nishimura H, Kitame F, Nakamura K, Deya E, Kiso M, Hasegawa A, Structural determination of gangliosides that bind to influenza A, B, and C viruses by an improved binding assay: Strain-specific receptor epitopes in sialo-sugar chains, Virology 189, 121–31 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Rohm C, Zhou N, Suss J, Mackenzie J, Webster RG, Characterization of a novel influenza hemagglutinin, H15: Criteria for determination of influenza A subtypes, Virology 217, 508–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Takashima S, Tsuji S, Tsujimoto M, Characterization of the second type of human beta-galactoside alpha 2,6-sialyltransferase (ST6Gal II), which sialylates Galbeta 1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes, J Biol Chem 277, 45719–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Harduin-Lepers A, Recchi MA, Delannoy P, The year of sialyltransferases, Glycobiology 5, 741–58 (1995).

    CAS  PubMed  Google Scholar 

  8. Tsuji S, Molecular cloning and functional analysis of sialyltransferases, J Biochem (Tokyo) 120, 1–13 (1996).

    CAS  Google Scholar 

  9. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi M-A, Samyn-Petit B, Julien S, Delannoy P, The human sialyltransferase family, Biochimie 83, 727–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Grundmann U, Nerlich C, Rein T, Zettlmeissl G, Complete cDNA sequence encoding human beta-galactoside alpha-2,6-sialyltransferase, Nucleic Acids Res 18, 667 (1990).

    CAS  PubMed  Google Scholar 

  11. Weinstein J, de Souza-e-Silva U, Paulson JC, Purification of a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase and a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase to homogeneity from rat liver, J Biol Chem 257, 13835–44 (1982).

    CAS  PubMed  Google Scholar 

  12. Weinstein J, de Souza-e-Silva U, Paulson JC, Sialylation of glycoprotein oligosaccharides N-linked to asparagine. Enzymatic characterization of a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase and a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase from rat liver, J Biol Chem 257, 13845–53 (1982).

    CAS  PubMed  Google Scholar 

  13. Crocker PR, Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signaling, Curr Opin Struct Biol 12, 609–15 (2002).

    CAS  PubMed  Google Scholar 

  14. Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y, Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection, J Virol 71, 3357–62 (1997).

    CAS  PubMed  Google Scholar 

  15. Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y, Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species, Virology 227, 493–9 (1997).

    CAS  PubMed  Google Scholar 

  16. Totani K, Kubota T, Kuroda T, Murata T, Hidari KI, Suzuki T, Suzuki Y, Kobayashi K, Ashida H, Yamamoto K, Usui T, Chemoenzymatic synthesis and application of glycopolymers containing multivalent sialyloligosaccharides with a poly(L-glutamic acid) backbone for inhibition of infection by influenza viruses, Glycobiology 13, 315–26 (2003).

    CAS  PubMed  Google Scholar 

  17. Karst NA, Linhardt RJ, Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides Curr Med Chem 10, 1993–2031 (2003).

    CAS  PubMed  Google Scholar 

  18. Seitz O, Glycopeptide synthesis and the effects of glycosylation on protein structure and activity, Chembiochem 1, 214–46 (2000).

    CAS  PubMed  Google Scholar 

  19. Meldal M, St Hilaire PM, Synthetic methods of glycopeptide assembly, and biological analysis of glycopeptide products, Curr Opin Chem Biol 1, 552–63 (1997).

    CAS  PubMed  Google Scholar 

  20. Wong CH, Chemoenzymatic synthesis: application to the study of carbohydrate recognition, Acta Chem Scand 50, 211–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Williams DC, Van Frank RM, Muth WL, Burnett JP, Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins, Science 215, 687–9 (1992).

    Google Scholar 

  22. Hamamoto T, Lee Y-C, Kurosawa N, Nakaoka T, Kojima N, Tsuji S, Expression of mouse Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase in an insoluble form in Escherichia coli and partial renaturation, Bioorg Med Chem 2, 79–84 (1994).

    CAS  PubMed  Google Scholar 

  23. McGowen MM, Vionnet J, Vann WF, Elongation of alternating alpha 2,8/2,9 polysialic acid by the Escherichia coli K92 polysialyltransferase, Glycobiology 11, 613-20 (2001).

    CAS  PubMed  Google Scholar 

  24. Shen GJ, Datta AK, Izumi M, Koeller KM, Wong CH, Expression of alpha2,8/2,9-polysialyltransferase from Escherichia coli K92. Characterization of the enzyme and its reaction products, J Biol Chem 274, 35139–46 (1999).

    CAS  PubMed  Google Scholar 

  25. Yamamoto T, Nakashizuka M, Terada I, Cloning and expression of a marine bacterial beta-galactoside alpha2,6-sialyltransferase gene from Photobacterium damsela JT0160, J Biochem (Tokyo) 123, 94–100 (1998).

    CAS  Google Scholar 

  26. Steenbergen SM, Wrona TJ, Vimr ER, Functional analysis of the sialyltransferase complexes in Escherichia coli K1 and K92, J Bacteriol 174, 1099–108 (1992).

    CAS  PubMed  Google Scholar 

  27. Shang J, Qiu R, Wang J, Liu J, Zhou R, Ding H, Yang S, Zhang S, Jin C, Molecular cloning and expression of Galbeta1,3GalNAc alpha2, 3-sialyltransferase from human fetal liver, Eur J Biochem 265, 580–8 (1999).

    CAS  PubMed  Google Scholar 

  28. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230, 1350–4 (1985).

    CAS  PubMed  Google Scholar 

  29. Sanger F, Nicklen S, Coulson AR, DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci USA 74, 5463–7 (1977).

    CAS  PubMed  Google Scholar 

  30. Dohi T, Nishikawa A, Ishizuka I, Totani M, Yamaguchi K, Nakagawa K, Saitoh O, Ohshiba S, Oshima M, Substrate specificity and distribution of UDP-GalNAc:sialylparagloboside N-acetylgalactosaminyltransferase in the human stomach, Biochem J 288, 161–5 (1992).

    CAS  PubMed  Google Scholar 

  31. Hidari KI, Ichikawa S, Furukawa K, Yamasaki M, Hirabayashi Y, Beta 1-4N-acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a beta 1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F, Biochem J 303, 957–65 (1994).

    CAS  PubMed  Google Scholar 

  32. Takeya A, Hosomi O, Kogure T, Identification and characterization of UDP-GalNAc: NeuAc alpha 2-3Gal beta 1-4Glc(NAc) beta 1-4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human blood plasma, J Biochem (Tokyo) 101, 251–9 (1987).

    CAS  Google Scholar 

  33. Malagolini N, Dall’Olio F, Di Stefano G, Minni F, Marrano D, Serafini-Cessi F, Expression of UDP-GalNAc:NeuAc alpha 2,3Gal beta-R beta 1,4(GalNAc to Gal) N-acetylgalactosaminy- ltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas, Cancer Res 49, 6466–70 (1989).

    CAS  PubMed  Google Scholar 

  34. Mattox S, Walrath K, Ceiler D, Smith DF, Cummings RD, A solid-phase assay for the activity of CMP-NeuAc: Gal beta 1-4GlcNAc-R alpha-2,6-sialyltransferase, Anal Biochem 206, 430–6 (1992).

    CAS  PubMed  Google Scholar 

  35. Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–5 (1970).

    CAS  PubMed  Google Scholar 

  36. Hidari KI, Kawashima I, Tai T, Inagaki F, Nagai Y, Sanai Y, In vitro synthesis of disialoganglioside (GD1 alpha) from asialo-GM1 using sialyltransferases in rat liver Golgi vesicles, Eur J Biochem 221, 603–9 (1994).

    CAS  PubMed  Google Scholar 

  37. Hayakawa K, De Felice C, Watanabe T, Tanaka T, Iinuma K, Nihei K, Higuchi S, Ezoe T, Hibi I, Kurosawa K, Determination of free N-acetylneuraminic acid in human body fluids by high-performance liquid chromatography with fluorimetric detection, J Chromatogr 620, 25–31 (1993).

    CAS  PubMed  Google Scholar 

  38. Suzuki Y, Matsunaga M, Matsumoto M, N-Acetylneuraminyllactosylceramide, GM3-NeuAc, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. Binding specificity of influenza virus Aichi/2/68 (H3N2) to membrane-associated GM3 with different molecular species of sialic acid, J Biol Chem 260, 1362–5 (1985).

    CAS  PubMed  Google Scholar 

  39. Suzuki Y, Nagao Y, Kato H, Matsumoto M, Nerome K, Nakajima K, Nobusawa E, Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. Specificity for oligosaccharides and sialic acids and the sequence to which sialic acid is attached, J Biol Chem 261, 17057–61 (1986).

    CAS  PubMed  Google Scholar 

  40. Suzuki Y, Suzuki T, Matsumoto M, Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membrane, J Biochem (Tokyo) 93, 1621–33 (1983).

    CAS  Google Scholar 

  41. Totsuka, A, Fukazawa C, Expression and mutation of soybean beta-amylase in Escherichia coli, Eur J Biochem 214, 787–94 (1993).

    CAS  PubMed  Google Scholar 

  42. Totsuka A, Fukazawa C, Affinity purification of beta-amylases originating from plant using cyclomaltohexaose-immobilized Sepharose 6B in the presence of ammonium sulfate, Protein Expression Purif 4, 333–6 (1993).

    CAS  Google Scholar 

  43. Baenziger JU, Fiete D, Structure of the complex oligosaccharides of fetuin, J Biol Chem 254, 789–95 (1979).

    CAS  PubMed  Google Scholar 

  44. Yet M-G, Chin CCQ, Wold F, The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin, J Biol Chem 263, 111–7 (1988).

    CAS  PubMed  Google Scholar 

  45. Spiro RG, Bhoyroo VD, Structure of the O-glycosidically linked carbohydrate units of fetuin, J Biol Chem 249, 5704–17 (1974).

    CAS  PubMed  Google Scholar 

  46. Bergh MLE, Hooghwinkel GJM, van den Eijnden DH, Biosynthesis of the O-glycosidically linked oligosaccharide chains of fetuin. Indications for an alpha-N-acetylgalactosaminide alpha 2 leads to 6 sialyltransferase with a narrow acceptor specificity in fetal calf liver, J Biol Chem 258, 7430–6 (1983).

    CAS  PubMed  Google Scholar 

  47. Edge ASB, Spiro RG, Presence of an O-glycosidically linked hexasaccharide in fetuin, J Biol Chem 262, 16135–41 (1987).

    CAS  PubMed  Google Scholar 

  48. Shibuya N, Tazaki K, Song ZW, Tarr GE, Goldstein IJ, Peumans WJ, A comparative study of bark lectins from three elderberry (Sambucus) species, J Biochem (Tokyo) 106, 1098–103 (1989).

    CAS  Google Scholar 

  49. Takesada H, Shibuya N, Nagashima N, The interaction of elderberry (Sambucus sieboldiana) bark lectin and sialyloligosaccharides as detected by 1H-NMR, J Biochem (Tokyo) 112, 143–6 (1992).

    CAS  Google Scholar 

  50. Wang WC, Cummings RD, The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues, J Biol Chem 263, 4576–85 (1988).

    CAS  PubMed  Google Scholar 

  51. Knibbs RN, Goldstein IJ, Ratcliffe RM, Shibuya N, Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins, J Biol Chem 266, 83–8 (1991).

    CAS  PubMed  Google Scholar 

  52. Legaigneur P, Breton C, El Battari A, Guillemot JC, Auge C, Malissard M, Berger EG, Ronin C, Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase, J Biol Chem 276, 21608–17 (2001).

    CAS  PubMed  Google Scholar 

  53. Legaigneur P, Breton C, Battari AE, Guillemot J-C, Auge C, Malissard M, Berger EG, Ronin C, Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase, J Biol Chem 276, 21608–17 (2001).

    CAS  PubMed  Google Scholar 

  54. Malissard M, Zeng S, Berger EG, Expression of functional soluble forms of human beta-1, 4-galactosyltransferase I, alpha-2,6-sialyltransferase, and alpha-1, 3-fucosyltransferase VI in the methylotrophic yeast Pichia pastoris, Biochem Biophys Res Commun 267, 169–73 (2000).

    CAS  PubMed  Google Scholar 

  55. Datta AK, Sinha A, Paulson JC, Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates, J Biol Chem 273, 9608–14 (1998).

    CAS  PubMed  Google Scholar 

  56. Paulson JC, Prieels JP, Glasgow LR, Hill RL, Sialyl- and fucosyltransferases in the biosynthesis of asparaginyl-linked oligosaccharides in glycoproteins. Mutually exclusive glycosylation by beta-galactoside alpha2 goes to 6 sialyltransferase and N-acetylglucosaminide alpha1 goes to 3 fucosyltransferase, J Biol Chem 253, 5617–24 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Suzuki.

Additional information

The authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidari, K.I.P.J., Horie, N., Murata, T. et al. Purification and characterization of a soluble recombinant human ST6Gal I functionally expressed in Escherichia coli . Glycoconj J 22, 1–11 (2005). https://doi.org/10.1007/s10719-005-0845-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-005-0845-9

Keywords

Navigation