Skip to main content

Advertisement

Log in

Tungsten-Containing Bioactive Radiocontrast Glass: Production and Properties

  • BIOMATERIALS
  • Published:
Glass and Ceramics Aims and scope Submit manuscript

A method is proposed for obtaining radiocontrast bioglass by pyrolysis of organic solutions containing tetraethoxysilane, tributyl phosphate, sodium oleate, and calcium oleate in turpentine and also an extract in a benzene solution of tri-n-octylamine. This method makes it possible to obtain tungsten-containing radiocontrast glass as a powder or coating on different porous carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Here and below, weight content, %, unless otherwise stipulated

References

  1. N. V. Buchilin and E. E. Stroganova, “Sintered glass-ceramic materials based on calcium-phosphate glasses,” Steklo Keram., No. 8, 8 – 11 (2008); N. V. Buchilin and E. E. Stroganova, “Sintered glass-ceramic materials based on calcium-phosphate glasses,” Glass Ceram., 65(7 – 8), 256 – 259 (2008).

    Article  CAS  Google Scholar 

  2. N. V. Buchilin, Porous Calcium Phosphate Glass-Ceramic Materials for Bone Endoprostheses, Author’s Abstract of Candidate’s Thesis [in Russian], RKhTU, Moscow (2010).

    Google Scholar 

  3. Q. Z. Chen, I. D. Thompson, and A. R. Boccacini, “45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering,” Biomaterials, 27, 2414 – 2425 (2006).

    Article  CAS  Google Scholar 

  4. L. L. Hench, “The story of Bioglass,” J. Mater. Sci.: Mater. Med., 17, 967 – 978 (2006).

    CAS  Google Scholar 

  5. L. L. Hench, “Bioceramics: from concept to clinic,” J. Am. Ceram. Soc., 74(7), 1487 – 1510 (1991).

    Article  CAS  Google Scholar 

  6. L. L. Hench, An Introduction to Bioceramics, World Scientific (1993).

  7. L. L. Hench, “Bioceramics,” J. Am. Ceram. Soc., 81(7), 1705 – 1972 (1998).

    Article  CAS  Google Scholar 

  8. S. K. Nandi, B. Kundu, and S. Datta, “Development and applications of varieties of bioactive glass compositions in dental surgery, third generation tissue engineering, orthopaedic surgery and as drug delivery system,” Biomater. Appl. Nanomed. (2011), pp. 69 – 116.

  9. T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, and E. B. Slamovich, “Osteoblast response to hydroxyapatite doped with divalent and trivalent cations,” Biomaterials, 25(11), 2111 – 2121 (2004).

    Article  CAS  Google Scholar 

  10. S. Deb, S. Abdulghani, and J. C. Behiri, “Radiopacity in bone cements using an organo-bismuth compound,” Biomaterials, 23(16), 3387 – 3393 (2002).

    Article  CAS  Google Scholar 

  11. J. Aberg, E. Pankotai, G. H. Billstrom, et al., “In vivo evaluation of an injectable premixed radiopaque calcium phosphate cement,” Int. J. Biomater., 2011, 7 (2011).

    Article  Google Scholar 

  12. X.Wang, J. Ye, and Y.Wang, “Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement,” Acta Biomater., 3(5), 757 – 763 (2007).

    Article  CAS  Google Scholar 

  13. J. Aberg, H. B. Henriksson, H. Engqvist, et al., “Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement,” J. Biomed. Mater. Res. A, 100(5), 1269 – 1278 (2012).

    Article  CAS  Google Scholar 

  14. A. P. Syritskii, A. A. Kishmishyan, M. B. Romanovskii, et al., Glass Mainly for Fillers of Composite Stomatological Materials, Pat. 2028980 RF, Application No. 5064553_33, July 13, 1992 [in Russian], publ. Feb. 20, 1995.

  15. A. M. Pelesh, N. P. Anyaikina, Yu. N. Isobello, et al, Radiocontrast Glass, Pat. 13965 Belarus, Application No. 20090701, Dated May 14, 2009 [in Russian], publ. Feb. 28, 2011.

  16. D. Mohn, M. Zehnder, T. Imfeld, and W. J. Stark, “Radio-opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity,” Int. Endod. J., 43(3), 210 – 217 (2010).

    Article  CAS  Google Scholar 

  17. A. L. Popov, N. M. Zholobak, O. I. Balko, et al., “Photo-induced toxicity of tungsten oxide photochromic nanoparticles,” J. Photochem. Photobiol., B. Biology, 178, 395 – 403 (2018).

    Article  CAS  Google Scholar 

  18. E. Tkalcec, M. Sauer, R. Nonninger, and H. Schmidt, “Sol-gel derived hydroxyapatite powders and coatings,” J. Mater. Sci., 36(21), 5253 – 5263 (2001).

    Article  CAS  Google Scholar 

  19. D. M. Liu, T. Troczynski, and W. J. Tseng, “Water-based sol-gel synthesis of hydroxyapatite: process development,” Biomaterials, 22(13), 1721 – 1730 (2001).

    Article  CAS  Google Scholar 

  20. Y. Masuda, K. Matubara, and S. Sakka, “Synthesis of hydroxyapatite from metal alkoxides through sol-gel technique,” J. Ceram. Soc. Japan, 98(10), 1266 – 1277 (1990).

    Google Scholar 

  21. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds [Russian translation], Mir, Moscow (1991).

    Google Scholar 

  22. V. E. Ermyashev and V. N. Bykov, “IR spectroscopy and the behavior of water in model glasses of the system Na2SiO3–NaAlSi3O8 ,” Vest. YuUrGU, Ser. Fiz., Khim., Matem., No. 19, 91 – 94 (2007).

  23. V. M. Mastikhin, “31PNMR study of I–IV group polycrystalline phosphates,” J. Phys. Chem. Solids, 47(4), 335 – 339 (1986).

    Article  Google Scholar 

  24. C. Jäger, G. Scheler, U. Sternberg, et al., “29Si and 31P MAS NMR study of the NASICON system Na1+xZr2(SiO4)x(PO4)3–x,” Chem. Phys. Lett., 147(1), 49 – 52 (1988).

    Article  Google Scholar 

  25. I. A. Sokolov, I. V. Murin, V. E. Kriit, et al., “The structure of the anionic matrix of alkaline phosphate glasses,” Vest. St.-Peterburg. Univ., Ser. 4, Issue 4, 54 – 74 (2012).

  26. M. A. Medkov, D. N. Grishchenko, N. I. Steblevskaya, et al., “Production of calcium phosphate powders and glass-ceramic coatings,” Khim. Tekhn., 14(5), 257 – 262 (1988).

    Google Scholar 

  27. M. A. Medkov, D. N. Grishchenko, V. S. Rudnev, et al., “Formation of glass-ceramic coatings on bioinert substrates,” Steklo Keram., No. 11, 38 – 42 (2013); M. A. Medkov, D. N. Grishchenko, V. S. Rudnev, et al., “Formation of glass-ceramic coatings on bioinert substrates,” Glass Ceram., 70(11 – 12), 417 – 421 (2013).

Download references

This work was partially supported by a grant from PFI of the far-east branch of the Russian Academy of Sciences ‘Far East’ (project No. 18-3-042) and as part of the government task of the FGBUN of the Institute of Chemistry of the Far-East Branch of the Russian Academy of Sciences (theme No. 0265-2018-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Medkov.

Additional information

Translated from Steklo i Keramika, No. 8, pp. 40 – 45, August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medkov, M.A., Grishchenko, D.N., Kuryavyi, V.G. et al. Tungsten-Containing Bioactive Radiocontrast Glass: Production and Properties. Glass Ceram 75, 322–326 (2018). https://doi.org/10.1007/s10717-018-0079-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-018-0079-5

Key words

Navigation